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Abstract—The report contains a proposal of solution for
the Higgs Boson Machine Learning Challenge, proposed in
the framework of the ”Machine Learning” course at EPFL
Lausanne. Several algorithms are presented to approach this
classification problem on CERN particle accelerator data.

I. INTRODUCTION

The goal of the challenge is to estimate the likelihood that
a given event’s signature is the result of a Higgs boson or
of some other process/particle. This is because, rather than
observing the boson directly, scientists measure the products
that result from its decay process which may be similar to
other particles’ ones.
In section II, we present the analysis of the database and
the meticulous preprocessing; afterwards, in section III, we
present the models built with the 6 requested algorithms
and the selection of the best hyper-parameters; finally, in
section IV, we illustrate their performance.

II. PREPROCESSING

A. First Analysis of the Dataset

The dataset contains 250000 points for training and 568238
for testing with 30 features and their corresponding binary
labels (“-1” for “background” and “1” for “signal”), which
clearly have to be predicted for the test set values.
First of all, we notice that one feature, PRI jet num, is the
only one to be categorical; it represents the number of jets
(showers of hadrons originating from a quark and a gluon,
clustered together after being produced in a particle collision)
and it ranges from 0 to 3. Inspired by the challenge docu-
mentation, we noticed that some features are meaningless for
some values of jets, therefore we have split the dataset into 4
subclasses, each one characterized by a different PRI jet num.

B. Management of Missing Values

From the documentation, we know that each “-999” value
in the dataset consists in a missing value; firstly, we decided
not to consider features presenting more than 70 % missing
data. Then, the remaining missing values have been replaced
by the median of the feature which is, according to theory, a
robust estimator.

C. Standardization

In order to ensure a good functioning of the numeric
optimization, it is a good practice to standardize the dataset:
we subtracted from each feature its mean and divided by its
standard deviation. This helps the feature matrix in having a
better condition number. Moreover, this is a good practice to
balance the weights of all the features for certain operations

(a) Labels by PRI jet num (b) 15th feature for 1st group

Fig. 1: Exploratory plots on the training dataset

such as the computation of the distance in the K-nearest-
neighbors method.

D. Feature Engineering

We plotted the features and ideated strategies to deal with
their peculiarities. Two relevant examples of empirical distri-
bution plots are shown in Figure 1.

• Logaritmic transform: for positive features, we com-
puted a transformation into log(1 + x), which helps in
reducing or removing the skewness of our original data.
Since the distribution of some of our continuous features
is non-normal, we applied this strategy to make the data
as “normal” as possible.

• Useless features: from the observation of the plots (e.g.
Figure 1a), we noticed that the empirical distribution of
some features does not change with the label, therefore
we simplified our model by not considering them.

• Symmetrical features: we computed the absolute value
of features in columns 14,17,23,261, which have a sym-
metric distribution with respect to 0.

• Angles: the features in columns 15,18,20,24,271 repre-
sent measures of angles. The applied strategy to adapt
the periodicity in a regression study was to replace
this column with the cos(x) and sin(x) transformations.
However, since the sine feature turns out to be ineffective,
it has been discarded to avoid overfitting and only the
cosine transformation has been kept.

E. Polynomial Feature Expansion

This technique improves the representation power of linear
models. For each feature, in addiction to its powers from 1
to M (whose choice is described later), we added as further
features its square root and cubic root. Moreover, we included
all the pairwise products.
The polynomial degree is one of the hyper-parameters of our

1Note that the columns after the 22th have their ID decreased by one, since
the PRI jet num column has been deleted



model; its optimal value M is found performing 3-fold cross-
validation.

F. Management of Outliers

To deal with the presence of outliers, we fixed α = 0.1
and decided to cap the extreme values of each feature to the
α-quantile (for the lower tail) and to the (1−α)-quantile (for
the upper tail).

III. MODELS AND METHODS

After the pre-processing on the dataset, we implemented
several models to solve the classification task which employ
linear models and logistic regression. Note that, as stated in
II-A, we used only the train data with a specific PRI jet num
to predict the label of test data belonging to the same group.
The methods considered are:

• Gradient Descent
• Stochastic Gradient Descent,
• Least Squares with Normal Equations
• Logistic Regression

We implemented the regularized versions as well in order to
reduce overfitting:

• Ridge Regression
• Lasso Logistic Regression (Logistic with L1-

regularization)
• Regularized Logistic Regression with L2 norm
The optimal hyper-parameter λ has been chosen with a 3-

fold cross-validation. In Figure 2, we report the accuracy trend
(in the case of the third class), which lead to our choice of
hyper-parameters.

Fig. 2: Accuracies obtained through a cross-validation for
different values of λ (L1 regularizer).

It is noteworthy to notice that a FISTA method has been
implemented to replace and improve in terms of computational
time the standard Gradient Descent when the reduction of the
computational cost is essential, for instance in the previous
cross-validation study.

We also implemented the K-nearest classification algorithm,
which provides an accuracy of 0.799; nevertheless, this

method is not recommended as the ones presented in
Table IV because of the high-dimensionality of the problem
(= 30) and the high computational time. It is however true
that, without an in-depth preprocessing, it turned out to be
more accurate than the logistic regression methods. The
reason lies in the fact that, when features are in different
forms and are not adapted for a logistic model, a spacial
method is more suitable because of its simplicity and its lack
of any model assumptions.

IV. RESULTS

We report the accuracy results obtained for each method
with the optimal choice of hyper-parameters:

Method Test Accuracy

Least Squares GD 0.690
Least Squares SGD 0.695

Least Squares Normal Eqs. 0.740
Ridge Regression 0.719

Logistic Regression 0.797
Reg. Logistic Regression (L2) 0.832

Lasso Logistic Regression 0.836

V. CONCLUSION

The best performance, with an accuracy on the test set of
0.836, was obtained with the Lasso Regression; this highlights
how even standard models can be powerful in solving complex
classification tasks, and how regularization can help to reduce
overfitting. In addiction, we want to remark that a relevant part
of the success of the task is up to the data preprocessing and
interpretation.
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