=Pi-L

Project 7
Stochastic modeling of pollutant transport in
aquifers
Course of Stochastic Simulation

Prof. Fabio Nobile

Matteo Calafa

SCIPER 342454

AY. 2021/2022

1 Introduction

1.1 Goal of the project

This work focuses on the predictions of a pollutant particle trajectory in groundwater flows. Four different
methods will be illustrated and compared, outlining the criteria to adopt the best among these depending
on the kind of problem to be simulated and the results that are pursued.

The domain of interest is an infinite plane region with the exception of a ball in the centre. We will then
define D = R?\ B(0, R). This ball of radius R represents an obstacle to the water flow, in particular a well
from which water is extracted with rate Q). Considering this domain, the fluid flow u(z,y) can be obtained
through the resolution of the Darcy equation:

V-u=0 in D
u=—kVp inD
Q

un:m OnaB

B.C. as |z] = o0

However, to simplify the forthcoming calculations with an analytical solution and not a numerical ap-
proximation, we can suppose that, if the flow far from the obstacle is u?**%(z,) = (1,0), then a good
approximation of u is:
1 1 1 x

o) = o] -0 (goos (V7)) = o]+ 5) 2
The formula in will be the definition of the water flow u(z,y) throughout the work report.
As already anticipated, the real objective of this work is the prediction of a pollutant particle trajectory.
More precisely, if the starting position (Xo,Yy) € D at t = 0 is set, the goal is to predict the probability
that 7 :=inf(t > 0: (X (¢),Y(t) € B)) (i-e. the first passage time of the particle through the well) is less or
equal than a fixed time horizon T
In such setting, the particle trajectory could be described by the following stochastic differential system:

AX(t) = u (X (), Y (t))dt + odWy(t) 0<t<T
dY (1) = us(X(£), Y ())dt + odWa(t) 0<t<T 2)
X(0)=X,, Y(0)=Yp

where W1 (t), Wa(t) are two different Wiener processes.

1.2 Standard Monte Carlo to simulate from the discretized SDE

Aiming to simulate the trajectory instead of resolving it from the first and simple idea is the
discretization through a Euler-Maruyama scheme:

{Xk+1 =X, + ul(Xk,Yk)At +oVALZ, Zy NN(O, 1)

3
Yit1 :Yk+u2(Xk,Yk)At+U\/AtZl/€ Z]IC NN(O,l) ()

where At is the time step of the [0, T partition, (X, Yy) are given and Zj, Z;, are independent Yk =1...N.
A first strategy to predict P(r < T') is now straightforward: after the simulation of Ny, discretized
trajectories, the probability can be estimated through the ratio of the number of trajectories that entered
the well over the total number of simulations. This is a standard Monte Carlo method that, most of the
times, returns reasonable predictions, however:

1

1. Because of the slow variance convergence rate of the standard Monte Carlo method (= O(N,,2)), it
is usually needed to have a very numerous sample to obtain precise estimations with low variance.
This obviously requires more iterations and then more computational effort. A variance reduction

improvement is then sought and will be presented in

2. Another deficiency of the standard Monte Carlo is the inaccuracy to predict events that are rare or too
frequent. For instance, if the true probability is far less than 1/N;;.,, then the Monte Carlo estimation
is prone to return the 0 value. A modification for rare events will be presented in

2 The Feynmac-Kac formula and the Finite Element Method al-
ternative

2.1 The Feynman-Kac equivalence

The same problem presented in the previous section could also be solved with a deterministic approach.
Indeed, the following equivalence holds:

Proposition 1. The entrance probability P(t < T) (given the starting point X(0)) is equal to ©(X(0),0),
where ¢ is the solution of:

ot +Lp=0 inD x[0,T)

p=1 on 0B x [0,T)

p(x,t) =0 as|x| = o0

o(x, T)=0 inD

and Lv := (u-V)v + 1(6%Av) is an operator defined on C*'(D x (0,T)).

Then, the same predictions can also be obtained through the numerical resolution of such system. These
results will be useful for us to confirm and compare our stochastic predictions. In general, however, this
method should not be considered as an alternative to the stochastic methods because it lacks of generality.
Even if this method avoids sampling error overheads, the deterministic equivalence holds only for this spe-
cific problem. Moreover, it is also demanding since it requires the solution to a partial differential equation
when the real objective is only its evaluation in a point.

2.2 Weak formulation of the deterministic problem

In any case, in order to get numerically these deterministic reference results, we now present the weak
formulation to apply in a finite element library such as fenics.

First of all, notice that the previous backward problem can be transformed in a forward formulation. If
@:Dx[0,T] - R, @(x,t):=¢(x,T —t), then:

G — Lp=0 inD x[0,T]
G=1 on 0B x [0, 7]
o(x,t) >0 as|x| = o0
P(x,00=0 inD

Another preliminary consideration is the fact that an infinite domain is computationally impracticable. For
this reason, we now define D as a big ball with a central hole in B. If the same boundary conditions
(originally at the infinite points) are here applied on the external circumference and if the big ball radius is
sufficiently large, we expect to approximate in an accurate way the infinite domain problem.

Since non-homogeneous Dirichlet boundary conditions are usually imposed afterwards in numerical libraries
as fenics, we now consider the homogeneous problem. Consider now 7; as the mesh discretization over
D. The finite element space of the piece-wise first order polynomials over D with homogeneous boundary

conditions is then:
Vi ={feCD): flop=0, Ffli, €P(ty)Vty € Ts}

So, the homogeneous problem consists in finding (-, t) € V}, s.t. ¢(-,0) = 0 and

1
/(ptv—/&p:O & /gotv—/(u-V)cpv—fag/Agpvzo
D D D D 2 Jp

uss-Lxreen 1
Gausg (iree /gptv—/(u~V)<pU+*O'2/V(p-V’U=0 Yv eV,
D D 2 Jp

To have a fully discretized formulation, only the temporal derivative discretization misses. To do this, a
first-order implicit Euler has been chosen and the formulation results:

Find {pn}n=0. N CVpst. po=0andVn=1...N —1:

At 4
/@nv—/cpn_lv—At/(u~V)<pnv+—02/V<pn-Vv:0 @
D D D 2 D

finally shows the explicit temporal step and will justify the definition of the weak problem in
the fenics implementation (subsection 7.2| line 170).

3 Importance Sampling as variance reduction technique

3.1 General aspects of the Importance Sampling method

As anticipated in Section we aim to adopt a variance reduction technique to improve the already
presented standard Monte Carlo. The proposed technique is the so-called Importance Sampling and, before
showing how it can be exploited in our problem, we give here the basic and general concepts.

If we consider a standard Monte Carlo estimation from a continuous random variable X that admits a
density function f : R — R, the idea is to sample from another distribution g called importance distribution.
We indeed observe that:

= x)f(z)de = x@ x)dr = !
Bsl0l = [vl = [v Bawar =, |ol] vr <

This trivial result is instead showing that we can really sample from g as long as we correct the sample
function with the distribution fraction. If g is chosen in such a way that the estimator variance is less than
the previous one, the Importance Sampling turns out to be a variance reduction technique for the Monte
Carlo method.

The main reason why this method has been proposed instead of other techniques is mainly due to the
suitability of the Importance Sampling also in the presence of Markov processes. If, indeed, we consider a
with initial distribution pg and transition kernel

P that admits density function p, i.e.:
P(z,A) =P(Xp41 € Al X, =2) = / p(r,y)dy VneN VA e B(R)
A
one can prove that sampling a function of the first N variables from Markov(pg, P) is equivalent to sample

from another process Markov(qo, @) as long as ¢ again dominates p and the following correction term (that
previously was simply f/g) is added:

U}(Xo,...,XN) = pO(XO) qu(Xj—lan)

g0(Xo) ;- a(Xj-1, X;)

This result is actually quite trivial since it only exploits the Markov property. Also in the case of a stopping
time 7 € N (as in our case) that is finite almost surely, one can prove the equivalent result:

E, - (Xo, ..., X:)] = Eg[o-(Xo, - - ., Xp)w(Xo, - .., X;)]

po(Xo) 11 P(Xj-1,X;) (5)

where w(Xg,...,X;) =
(%o) q0(Xo) 7 (X1, X;)

3.2 Importance Sampling for the pollutant transport simulation

Considering again the Euler-Maruyama scheme in [Equation 3| we could observe that the original X and Y
stochastic processes are reformulated as discrete-time continuous-space Markov chains. Every X1, Yii1
depends only on the values of the previous step, indeed:

Xk+1‘Xk,YkNN(,U,z,J2At) ,ux:Xk—‘rUQ(Xk,Yk)At
Yv]€4r1|)(}<;,yv}C ~ N(,U/y,UQAt) Loy = Y. + UQ(Xk,Yk)At

As discussed in the previous section, we could then try to implement a Important Sampling algorithm. The

proposed importance distribution idea is based on the shift of the means of these normal Markov kernels,
ie:

Xir1 =X Xk, Y cz) At VAtZ

{ k+1 g+ (u(Xk, Yi) + c2) At + o k ¢oyc, €R (6)

Yip1 = Yi + (w2 (Xp, Yi) + ¢y) Ay + 0 VALZ),

From another point of view, this is equivalent to change the distribution of the random variation AW} =
oNALZy, ~ N(0,0%2At) to AWy, = c, At + oV ALZy, ~ N(c,At,0?At). At this point, notice that the
function ¥, (Xo, Yy, X1,Y7... X, Y;) actually depends only on these Brownian increments since all the
other components are fixed parameters. Then, it is enough to compute the probability density functions
only of these random variables that are:

1 for the original distributi
B ——¢ 20°At or e Orlglna 1stribution
P(Xp1| Xk, Vi) = PAWY) = { VEmoPAt s a2
L T 207A¢ for the IS distribution

\/27702Ate
The same for the Y case. Finally, the correction term w(Xj.,, Yp.-) turns out to be:

T—1

P(Xkt1, V1| Xi, Vi) 1 pp P(Kh1 [X, Vi) p (Vi1 | X, V)
P1s(Xna1, Y [Xi, Vi) 220 Prs(Xia [X, Yi)prs (Ve [X, Yie)

7'71

’LU(XO:T, YO 7— = H

H { —5 AT [(AWE — ¢, At)? + (AW, — ¢, At)? — (AW})* — (AW,@)’Z}}
:wk(AWk,AWé)

Equation 7|will justify the Importance Sampling implementation (subsection 7.4} line 37). It is important to

notice that, instead of calculating w directly from the entire Markov chain, it has been preferred to compute
it step by step from the wy components in order to avoid memory or floating issues.

For what concerns the choice for the best values of c;, ¢, we opted for experimental tests that returned the
approximate optimal solutions (best_c function in and will be shown in
To conclude this section, it is important to explain the reason of the choice of the importance distribution.
The most general and simple choices usually consist to shift or scale the original distribution that, in this
case, is normal. The shifting transformation is the one proposed that turned out to be successful. On
the other hand, the scaling transformation (i.e., for normal distributions, the correction of the variance),
causes some issues when the temporal step At gets smaller. If, indeed, we reply the computation of w as in
but with different variances (e.g. o and ¢’), we get a term that diverges as At — 0. This is the
reason why only the shifting transformation is preferred, avoiding to transform the variance too.

4 The splitting method

4.1 A solution to simulate rare events

We now wander whether it is possible to estimate the entrance probability in the case its true value is very
small or, in other terms, we deal with a rare event. This is a very common scenario: for instance, in our
problem, this happens every time the starting point (X, Yp) is chosen sufficiently distant from the well.
As already introduced in Monte Carlo method is not suitable to predict probabilities that
are far less that 1/Njie, (unless Nji, is increased a lot, but this is often not feasible). With Importance
Sampling, the estimation can be certainly improved since the rare event, under the importance distribution,
could become a “less” rare event. However, we usually do not expect this to be a significant improvement
and a method ad hoc for rare events must be adopted.

The proposed strategy is the so-called Splitting Method ([1]). The basic idea is to split the full trajectory of
the particle into multiple paths that belong to different subdomains. In this way, the probability estimation
is obtained through a product of conditional probabilities that are, in general, not small as the one for the
full path and can then be estimated with the previous methods.

Consider now Cy D C7 D -+ - D Cf nested subdomains and assume the particle is initially located in a point
Xy of Cp. We aim to compute the probability that the particle enters C'y before the time horizon 7. The
Splitting Method exploits the following equivalence:

T T T T T T
PXO(X c CL) :PXU(X < CL‘X S CLfl)...IPXO(X < CQ|X c Cl) ']PXO(X S Cl)

where the symbol g means the entrance before time T or, equivalently, that the first time passage 7, =
infy>o{X(t) € C;} is less or equal than 7. The idea is then to compute these probabilities separately and
then to multiply them. However, except for the first level, it is not known a priori from the formula which
starting point to use and how many simulations to run for each level. We opted for the Fized Effort Splitting
algorithm described in [3] where the starting points are uniformly sampled from the entrance points of the
previous layer in such a way that their cardinality is constant (= Nj.,) for each level. Since not all the
trajectories enter the following sub-domain, this last proposition implies that the sampling has to be done
with repetition.

4.2 The Splitting Method for distant particle trajectories

As already stated, we aim to adopt the Fixed Effort Splitting for which the number of simulations is Ny,
for each level. For what concerns the definitions of the subdomains, because of the round shape of the
domain, it is natural to define them as nested balls with constant radius increments. The number of levels is
instead chosen as L ~ —In(p)/2 with p as the true probability. This choice should give the lowest variance
for the estimator ([3]).

5 Results

The following parameters have been set for all the simulations: 0 =2, Q@ =1, R=1.

5.1 Finite Element Reference values

We opted to firstly show the outcomes related to in order to have some reference results that well
approximate the exact values and can be used to evaluate the precision of the stochastic estimations. As
already introduced, fenics library has been used to compute the finite element solution. In the
main visual results of the Finite Element solution are shown.

Finite Element mesh PDE solution (2D profile) at t=T

0.8 4

0.6 4

B
1.00 <
K
S
0.4+
0.75 1
0.50 02
0.25 4
0.0 4
0.00 T T T u T u T T T T T T
0.00 025 050 075 100 125 150 175 2.00 —4 =2 o 2 4
X
(a) Finite Element mesh detail. On the bottom-left, a (b) 2D profile of the solution at t = T,y = 0. The red
quarter of the well region. square is the profile of the well, notice that the solution

respects the boundary conditions on it.

PDE solution at t=T

(¢) Solution at t = T. Notice the effect of the diffusive term. However, the
solution turns out to be slightly asymmetrical because of the convective
term.

Figure 1: Details of the Finite Element solution. Number of mesh nodes = 710’767, number of temporal steps = 800, radius
of the domain = 40 R = 40

After having checked the regularity of the numerical solution, the fulfilment of the boundary conditions
and the independence from the mesh, we decided to study how much the probability estimations depend
on the main discretization parameters. These are the mesh size, the number of temporal steps, the domain
extension and their results are shown respectively in [Table 1] [Table 2| [Table 3|

First of all, we observe that prediction values are consistent with the distance of the starting point from
the well. Then, we observe that the predictions are, as well as the solution, almost independent from the
discretization parameters. Only the probability from (7.0,7.0), because of its very small value, is prone to
relatively higher perturbations. However, we can deduce these probabilities with a high level of accuracy.
The reference solutions are then, respectively: 50.8%, 0.98%, 6.26%, 5-10".

’ Xy H 178129 nodes \ 355619 nodes \ 534234 nodes \ 710767 nodes ‘
(1.2,1.1) 0.508816167601 0.508013732378 0.508331147046 0.508474982723
(3.0,4.0) || 0.00968527172491 0.0097400740273 | 0.00976409737301 | 0.00976687266362
(2.5,2.5) 0.0622652923923 0.062502467559 0.062522222027 0.0625908059134
(7.0,7.0) || 4.13821908708e-07 | 4.51422147941e-07 | 4.64810669551e-07 | 4.70482174401e-07

Table 1: PDE resolution varying the mesh-size (temporal steps=800, domain radius =40R)

[Xo] 200 steps 400 steps \ 600 steps 800 steps
(1.2,1.1) 0.508256548529 0.508402251884 0.508450748054 0.508474982723
(3.0,4.0) 0.00978398016881 | 0.00977257745361 | 0.00976877449247 | 0.00976687266362
(2.5,2.5) 0.0624920502402 0.0625578098727 0.0625797986255 0.0625908059134
(7.0,7.0) 5.4747816346e-07 | 4.9558521308e-07 | 4.78787066572e-07 | 4.70482174401e-07

Table 2: PDE resolution varying the number of time steps (mesh-size=600, domain radius=40R)

[X] 20 R \ 30 R \ 40 R \
(1.2,1.1) [[0.508408630847 0.508564939908 0.508474982723
(3.0,4.0) || 0.00978949087774 | 0.00978907182132 | 0.00976687266362
(2.5,2.5) || 0.0626261832305 | 0.0625999443181 | 0.0625908059134
(7.0,7.0) || 4.86692252104¢-07 | 4.80475060866¢-07 | 4.70482174401e-07

Table 3: PDE resolution varying the radius of the domain (mesh-size=600, temporal steps=800)

5.2 Standard Monte Carlo results

In the standard Monte Carlo scheme, instead, two main sources of errors need to be considered: the first one
is the usual sampling error of the Monte Carlo estimation that has a completely random nature. The second
one is the discretization in the Euler-Maruyama scheme that is a numerical and not stochastic error. Then,
again, we decided to compare results from different values of Monte Carlo iterations and At discretization
steps that are shown in[Table 4] The C.I. term indicates the semi-amplitude of the 99% asymptotic
confidence interval for the Monte Carlo estimations.

5-102 5-103 5-10%

’ X Prediction \ C.IL Prediction \ C.L Prediction \ C.IL
(1.2,1.1) 0.5100 0.0576 0.5052 0.0182 0.5041 0.0058
(3.0,4.0) 0.0064 0.0089 0.0104 0.0037 0.0097 0.0011
(2.5,2.5) 0.0612 0.0273 0.0654 0.0090 0.0064 0.0028

Table 4: Monte Carlo estimations varying the number of iterations (time-step = 10~%)

10~2 1073 1072
’ X Prediction \ C.L Prediction \ C.L Prediction \ C.L
(1.2,1.1) 0.44342 0.00571 0.48638 0.00576 0.50412 0.00575
(3.0,4.0) 0.00798 0.00100 0.00844 0.00110 0.00966 0.00105
(2.5,2.5) 0.05412 0.00257 0.05896 0.00270 0.06248 0.00274

Table 5: Monte Carlo estimations varying the time discretization (5 - 10 Monte Carlo iterations)

First of all, results clearly resemble the ones obtained in and get closer to these values as the
discretization parameters improve. The confidence intervals in clearly reduce at every improvement

step (more precisely, the rate is v/10 since the iterations are raised 10 times at each step). On the contrary,
the confidence intervals shown in are almost constant. We stress again that Euler-Maruyama error
is indeed numerical and it is not directly related to sampling errors and variances. This can also be observed
noticing that the convergence is monotone (the prediction increases as At decreases) instead of having an
asymptotic normal error. At this point, it is natural to wander the order of this numerical error.

A convergence study has been executed to this purpose paying attention to reduce the random influences on
the results. First of all, it is needed to let the sampling error negligible with respect to the one that will be
estimated. This can be done increasing a lot the number of Monte Carlo iterations and letting a very coarse
trajectory discretization. Another improvement could be to let the same Brownian increments to be shared
among simulations with different A¢. The proposed idea is to run multiple Monte Carlo simulations with
At following the powers of 2. The first simulation will do a Euler-Maruyama increment at every step, the
second one at alternating steps, the third one only 1 time out of 4 and so on. In this way, we optimize the
computation and many Brownian increments are shared. Thus, trajectories with smaller At can be perfectly
seen as refinements of the trajectories with bigger At. Errors are computed with respect to the solutions
from and the same At-convergence scheme is repeated 5 times to show the magnitude of
possible random influences. These results are finally plotted in

Convergence of Euler-Maruyama scheme

100
_ 107
L
3
o
]
%
a
-2
10 —w— 2rors
_ mw
—
10~ ot
10-2 107

ity

Figure 2: Convergence of Euler-Maruyama estimations (Xo = (2.5,2,5), Niter = 5 - 10%, 5 recurrences)

First, the number of Monte Carlo iterations is confirmed to be sufficiently high to let the sampling error
negligible, indeed the five convergence trends are almost overlapped. From the plot, it is clear that the
Euler-Maruyama prediction converges with an 1/2 order. This result differs from the theoretical weak error
that is well-known in literature and equal to 1 (see, for instance, Theorem 14.5.1 in) Under a more
careful analysis, however, one can notice that this problem does not satisfy the regularity assumptions:
the process {X, }n—o. r is regular (it has indeed constant or regular coefficients) but it is stopped if it
enters the well. So, if 71 is the entrance time, it means that {X,,},>n keeps constant and then it is evident
the discontinuity with the previous process coefficients. Moreover, the probability function p(X;) to be
estimated is an indicator function and then it is discontinuous as well (while it is required to be C*(D),
see again the assumptions of g in Theorem 14.5.1 from) It is then clear that the first order can not be
guaranteed from the theory and the lack of regularity is presumably the reason of the 1/2 order.

5.3 Importance Sampling results

The theoretical motivation of this method has already been discussed in Here, we aim to experi-
mentally achieve the optimal values for c;, c, and show their benefits from the results. The simple strategy
that has been adopted consists in executing multiple runs with different c, keeping fixed ¢, and vice versa.
A variance comparison is then shown in Here, setting Xy = (2.5,2.5), two passages have been
executed: first of all ¢, was set to zero and the experiment proved that ¢, = —4 was the optimal solution
(Figure 3a). Then, fixing ¢, = —4, ¢, = —3 reveals to be the other solution (Figure 3b). Another passage
could be added to conversely confirm that ¢, = —4 is the optimal solution when ¢, = —3. Even it is not
guaranteed to be the global optimum, the fact that this solution provides a lower variance than c;,c, =0
confirms that the Importance Sampling really improves the standard Monte Carlo. To additionally confirm
that results are not affected from these parameters choice, shows that the estimators are indeed
independent. Results obtained with this choice of parameters are instead shown in [Table 6] [Table 7]

Sigma comparison for Importance Sampling Sigma comparison for Importance Sampling
0.020 0.012
0.011
0.018 -
o w 00104
b= =
2 0.016 1 2
= B 0.009 4
& &
2 0014 2 0008
& &
— 00124 - i
G] 0.007
0.010 0.006 -
0.005
0008 1 . . . : T T : T T T T T T
-6 -5 -4 -3 -2 -1 0 -6 -5 -4 -3 -2 -1]
X oy
(a) cq varies, ¢, =0 (b) ¢y varies, ¢, = —4

Figure 3: Comparison of confidence interval semi-amplitudes with different ¢z, ¢y (Xo = (2.5,2,5), Niter = 1000, At = 0.005)

Estimation comparison for Importance Sampling Estimation comparison for Importance Sampling
0.0625
0.060
0.0600 4
0.058
0.0575 1
0.056
% 00550 4 1]
s = 0.054 4
0.0525 4
0.052
0.0500 4
0.050
0.0475 1
T T T T T T T 0048 L T T T T T T
-6 -5 —4 -3 -2 -1] -6 -5 -4 -3 -2 -1 0
X cy
(a) ¢, varies, ¢, =0 (b) ¢y varies, ¢, = —4

Figure 4: Comparison of Importance Sampling estimations with different ¢z, ¢y (Xo = (2.5,2,5), Njter = 1000, At = 0.005)

5-107 5-103 5-10%
X Prediction C.lL Prediction C.L Prediction C.L
(2.5,2.5) 0.0617 0.0078 0.0605 0.0023 0.0620 0.00076

Table 6: Importance estimations varying the number of iterations (time-step = 10~%)

1072 1073 1077
X Prediction C.L Prediction C.L Prediction C.L
(2.5,2.5) 0.0523 0.00069 0.0594 0.00074 0.0614 0.00076

Table 7: Importance estimations varying the time discretization (5 - 10* Monte Carlo iterations)

As for the Monte Carlo simulations, confidence intervals follow the rate /10 in and keep constant in
Also the predictions are consistent with the true values. The new outcome is the lower value for the
confidence intervals (or, equivalently, the variances). If compared to[Table 4] results, the confidence
intervals turn out to be reduced almost 4 times. With very few additional calculations, the Importance
Sampling method is so capable to clearly improve the standard Monte Carlo performance.

5.4 Splitting Method results

The last proposed strategy is the Splitting Method for rare events. In this section, we aim to compute the
entrance probability when the starting point is Xy = (7.0,7.0). From the reference solution
of such probability has been obtained even if not accurately as for the other starting points. Despite this, we
can consider the exact solution as of the order of 5-1077, i.e. a very small value. Even if Monte Carlo method
runs for 5-10* iterations (the highest value considered so far), the probability that the estimation is the exact
zerois~ (1-5- 10_7)(5'104) ~ 97.5%. The Splitting Method then needs to be used. As already anticipated,
the Fized Effort Splitting strategy from [3] has been implemented. With such choice, the number of paths
is constant for every level and has been set to 10*. In addition, the number of levels has been computed
with the optimal choice L = — In(psye)/2 from [3] and, considering the previous approximation of pgye, it
resulted that the best choice is L = 7. Because of the choice of constant radius increments, the definitions
of the subdomains is now straightforward and results from 4 runs are shown in

] Xy H Run 1 \ Run 2 \ Run 3 \ Run 4 H Mean \
[(7.0,7.0) [[4.39580e-07 | 4.76504e-07 | 3.90226e-07 | 5.67980e-07 || 4.68573¢-07 |

Table 8: Splitting method simulations (1[)4 Monte Carlo iterations, time-step = 5-10~%, 7 levels)

Despite a precise comparison can not be done because of the lack of an accurate reference solution, results
are clearly confirming the 5-10~7 prevision and the method together with the parameters choices turn out
to be correct and consistent. For what concerns the discretization parameters, one can indeed observe that
the number of total iterations and the time-step are almost the same as the ones in the previous simulations
that revealed to be accurate enough for the standard methods.

6 Conclusion

In this work, different methods have been presented to solve the probability estimation problem and their
results have been shown. First, the Finite Element method applied to the Feynman-Kac equivalent problem
has been introduced to find numerically the reference results. Then, 3 variants of the Monte Carlo method
have been presented and discussed showing that the standard Monte Carlo, because of its simplicity, often
needs to be improved. Then, variance reduction and rare event method results have clearly shown the
benefits with respect to the reference solutions. Further extensions to this work could certainly include the
choice of different variance reduction techniques and other Splitting Method strategies.

10

References

1]
2]
[3]

Marnix Joseph Johann Garvels. “The splitting method in rare event simulation”. PhD thesis. University
of Twente, 2000.

E. Kloeden Peter and Eckhard Platen. Numerical Solution of Stochastic Differential Equations. Berlin:
Springer, 1992. 1SBN: 978-3-662-12616-5. DOI: https://doi.org/10.1007/978-3-662-12616-5.

P. Kroese Dirk, Thomas Taimre, and I. Botev Zdravko. Handbook of Monte Carlo Methods. New York:
John Wiley & Sons, 2011. 1sBN: 9781118014967. DOI: https://doi.org/10.1002/9781118014967.

11

https://doi.org/https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/https://doi.org/10.1002/9781118014967

[I T U R C R

© W N e ;A W N e

20

21

22

23

24

25

26

27

28

29

30

31

7 Appendix: Python codes

The code is organized in the following way: each of the 4 presented methods (Finite Element, standard Monte Carlo,
Importance Sampling and Splitting Method) corresponds to a Python script that is separated from the others. Each script
contains various functions that are defined to be used in other functions or to be directly called in the main. The only
exception is the script parameters.py that has been created to define all the main parameters since they are often shared
in different scripts and their assigned values are in such way unequivocal.

7.1 parameters.py

import numpy as np
import scipy.stats as st

MAIN PARAMETERS FILE #H#HHHHH#

711

X0 MC = np.array ([[1.2, 1.1],[3.0,4.0],[2.5,2.5]]) # starting points to be used in standard
Monte Carlo method

X0_FE = np.array ([[1.2, 1.1],[3.0,4.0],[2.5,2.5],[7.0,7.0]]) # starting points to be used in
Finite Element method

X0 _IS = np.array ([2.5,2.5]) # starting point to be used in Importance Sampling method

X0 SM = np.array ([7.0,7.0]) # starting point to be used in Splitting Method

sigma = 2 # diffusion of the porous media

Q =1 # extraction mass rate

R =1 # well radius

T =1 # time horizon

u = lambda X: np.array ([1.,0.]) + (Q/(2#np.pi*(np.power(X[0],2) + np.power(X[1],2))))=*X # water
flow function

poly order = 1 # by default, Finite Element method is used with first order polynomials

Za = st.norm.ppf(l — 0.01 / 2) # multiplicative constant for confidence intervals

7.2 finite_element.py

import fenics as f

import dolfin as d

import mshr as m

import numpy as np

import parameters

from tqdm import tqdm

from mpl toolkits.mplot3dd import Axes3D
from matplotlib import cm

import matplotlib.pyplot as plt

def print_ message(idx):

A function for multiple printing messages

if (idx==0):
print (’\n. _FINITE _ELEMENT_METHOD_ _\n’)
elif (idx==1):
print ("\r{0}".format ("Mesh_generation : . ccoicoeeeoe oo ooeooeeeoon started_ =",
end="")
elif (idx==2):
print ("completed")
elif (idx==3):

print ("\r{0}".format ("Functions_and _BC_definition:____co o ccccccoeooo started_ =>_"),
end="")
elif (idx==4):
print ("\n\n\r{0}".format ("PoSt—ProcesSINg @ __ e ceeean started._ =>_")
, end="")

def post_ processing(u,mesh):

4+ Post—processing: 3D plot, 2D profile plot, mesh plot ###H#

12

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

INPUT:
u = Finite Element solution
mesh = Finite Element mesh

print _message (4)
n_points = 200
#——— 3D solution plot

x = np.linspace(—5*parameters.R,5* parameters.R,n_points)

y = np.linspace(—5*parameters.R,5% parameters.R,n_points)
x,y = np.meshgrid(x,y) # creation of the 3D plot grid
x = x.ravel ()
y = y.ravel ()
z = np.zeros(x.shape)
inner list = [] # the list of grid points inside the well region
for i in range (len(x)):
if (x[i]**2 + y[i]**2 >= parameters.R#%2): # i.e. if the point is outside the well region
P = f.Point(x[i],y[i])
z[i] = u(P) # z is the evaluation of u(x,y)
else:

inner list.append(i)

x = np.delete(x,inner list) # we delete every coordinate corresponding to points inside the
well

y = np.delete(y,inner _list)

= np.delete(z,inner list)

N
\

plt.figure ()

ax = plt.axes(projection="3d")

ax.plot trisurf(x, y, z, cmap=cm.jet, linewidth=0, antialiased=False)
ax.set title(’'PDE_solution_at_t=T")

plt .xlim ([—5*parameters.R,5* parameters.R])

plt .ylim([—5*parameters.R,5% parameters.R])

plt .savefig("./figures/u_3d")

#——— 2D solution plot

x]l = np.linspace(—bxparameters.R,—parameters.R,n_points) # i.e. x points at the left of the
well

xr = np.linspace (parameters.R,5%xparameters.R,n_points) # i.e. x points at the right of the
well

zl = np.zeros(xl.shape

zr = np.zeros (xr.shape)

for i in range (len(xl)):
P = f.Point(x1[i],0) # every z is the evaluation of u(x,y=0), discerning left from right
zl[1] = u(P)
P = f.Point(xr[i],0)
zr[1] = u(P)

q = np.array ([[—parameters.R, —parameters.R, parameters.R, parameters.R, —parameters.R], [0,
1, 1, 0, 0]]) # the array that will plot the square well

plt.figure ()

ax = plt.axes ()

plt.plot(xl,zl, ’tab:blue’)

plt.plot (xr,zr, ’tab:blue’)

plt.plot(q[0,:],q[1,:], ’tab:red’)

plt .xlabel ('x")

plt.ylabel ("u(x,0,T)")

ax.set title(’PDE_solution_(2D_profile)_at_t=T");

plt.savefig("./figures/u_2d")

#——————— Mesh plot
plt.figure ()

13

129

130

131

132

133

135

136

155

156

157

158

159

160

def

def

d.plot (mesh, title="Finite _Element_mesh")
plt .xlim ([0,2% parameters.R])

plt.ylim ([0,2+ parameters.R])
plt.savefig("./figures /mesh")

print _message (2)

probability print (u):

###+H+ To be used to print on screen the probability estimations #H#H##

#
INPUT:
u = Finite Element solution

for i in range(parameters.X0 FE.shape[0]):
X0 = parameters.X0 FE[i ,:]
print (’X0=("+4str(X0[0]) +’,’+ str(X0[1]) +’):_", u(X0))

pde resolution (mesh size ,num _steps,max_length):

Finite Element main function ###4#

#

INPUT:

mesh size = number of mesh elements along one domain diagonal (it is not the total number
of elements)

num_steps — number of time steps for the temporal discretization

max_length = radius of the domain, should be high enough to approximate the infinite domain

print _message (0)

#— preliminaries —

f.set_log level(f.LogLevel . ERROR) # to print only error messages (set 13 to print full run
information)

T = parameters.T

dt =T / num_steps # discretization time step length

#— mesh generation —

print message (1)

D = m. Circle (f.Point (0,0) ,max_length)

B = m. Circle (f.Point (0,0) ,parameters.R)# i.e. the well

domain = D — B # the full domain is the big ball without the well
mesh = m. generate mesh (domain, mesh size)

print _message (2)

print _message (3)
#— definition of the functional space —
V = f.FunctionSpace (mesh, ’P’, parameters.poly order) # by default, first order polynomials

#— boundary conditions —

infinite distance = ’on_boundary &&_pow(x[0],2)+pow(x[1],2)_>_2%pow(’ + str(parameters.R) +’
2)°
3

cylinder = ’on_boundary &&_pow(x[0],2)+pow(x[1],2) _<_2%pow(’ + str(parameters.R) + ’,2)’

bc_infinite = f.DirichletBC(V,f.Constant(0) ,infinite distance) # homogeneous dirichlet on the
infinite distance

be_cylinder = f.DirichletBC(V,f. Constant(1),cylinder) # non—homogeneous dirichlet on the well
border

bc = [bc_infinite ,bc_cylinder |

#— test functions —

14

161

163

164

165

167

168

169

171

172

174
175

176

178

179

180

182

183

184

185

187

188

189

190

191

192

193

194

196

197

198

199

200

201

203

204

205

206

207

208

211

212

213

215

216

217

220

221

def

u n = f.Expression(’0’,degree=1) # it is used to return the solution at the previous temporal
step in the time discretization , initialized at 0 because of the initial conditions

u n = f.interpolate(u_n,V)

u = f.TrialFunction(V) # the FE solution

v = f.TestFunction(V) # the FE test function

#— definition of expression needed in variational form —
U = f.Expression ((’1._4+.Q/ (2% pi*(pow(x[0],2) _+_pow(x[1],2)))cx.x[0] ", 'Q/(2xpix(pow(x[0],2)_+
_pow(x[1],2)))oxox[1]), degree=1, Q=parameters.Q, pi=np.pi) # the water flow function

#— definition of variational problem —

F = uxvxf.dx — u_n*vxf.dx — dt*f.dot (U, f.grad(u))*v«f.dx + 0.5% parameters.sigma*+2+xdt=f.dot(
f.grad(u),f.grad(v))=*f.dx # weak formulation, see report for the derivation

a, L = f.lhs(F), f.rhs(F)

print _message (2)

print (’\n\nSpace_polynomial_order:_’, parameters.poly order, ’'____Number_of_mesh_nodes:_’,

mesh.num_vertices(),’\n\n’)

#— main calculation steps —

print ("FE_system_solving_("+ str(num_steps) +"_temporal_steps):")
u = f.Function (V)

t =0

for n in tqdm(range (num_steps)):

+

+= dt # time increment
f.solve(a=—L,u,bc,solver parameters={’linear solver ’:’mumps’}) # F.E. system solving
_n.assign(u) # assign u to u_n for the mnext step

f=1

print (’\n_FINITE_ELEMENT_solving_completed!\n”)

return u,mesh

independence _study (mesh size, num _steps, max_length, ind_ list, ind_type):

i To be used to compare multiple solutions with different parameters (chosen from
mesh size, num_steps, max_ length) ####

#

INPUT:

mesh size = number of mesh elements along one domain diagonal (it is not the total number
of elements)

num_steps = number of time steps for the temporal discretization

max_length = radius of the domain, should be high enough to approximate the infinite domain

ind _list = list of parameter values

ind _type = ’grid’ or ’time’ or ’'max-distance’, the kind of parameter that corresponds to
ind list (i.e. the parameter the user wants to vary)

—— 2D plot ———

n_points = 200
x —np.linspace (parameters.R,5*parameters.R,n_points) # the comparison plot is made on the 2D
profile of the solution at the right of the well

z = np.zeros(x.shape)
plt.figure ()
ax = plt.axes ()

for i,q in enumerate(ind list):

print ('SIMULATION_’, i-+1,’/’ len(ind_list))

if (ind_ type — ’grid’):

u,mesh = pde_resolution(q, num_steps, max_ length)
elif (ind_ type = ’time’):

u,mesh = pde resolution(mesh size, q, max_length)
elif (ind_ type =— ’max-distance’):

u,mesh = pde_ resolution (mesh size, num_steps, q)

15

def

def

probability print (u)

for j in range (len(x
P = f.Point(x[j]
z[j] = u(P)

if (ind_ type =— ’grid’):

plt.plot(x,z, label=str (mesh.num _vertices())+’_nodes’)
elif (ind type =— ’time’):

plt.plot(x,z, label=str(q)+’_time_steps’)
elif (ind_ type =— ’'max-distance’):

plt.plot(x,z, label=str(q/parameters.R)+’_R’)

if (i==0):
u_first = u
elif (i=len (ind _list)—1):
u_last = u
plt.xlabel ('x")

—~ —~

plt.ylabel ("u(x,0,T)")

plt.legend ()

ax.set title('FE_ +ind type+’—independence_(t=T)");
plt.savefig("./figures/u_"+ind_ type+" independence")

err _inf

x = np.linspace(—5*parameters.R,5* parameters.R,n_points)
y = np.linspace(—b5*parameters.R,5* parameters.R,n_points)
x,y = np.meshgrid(x,y)

x = x.ravel ()

y = y.ravel ()

z _first = np.zeros(x.shape)

z_last = np.zeros(x.shape)

for i in range (len(x)):

if (x[1]**2 + y[i]**2 >= parameters .Rx%2):
P = f.Point(x[i],y[i])
z_ first[i] = u_first (P)
z_last[i] = u_last(P)

?

print (’\nErr inf_between_first_and_last:_’,np.linalg.norm(z_ first—z last, ord=nmp.inf),’\n’)

save result (u,mesh):
HHHE To save locally results from Finite Element Method ##4##

#

INPUT:

u = Finite Element solution
mesh = Finite Element mesh

mesh file = d.File("./files /mesh.xml")

mesh _file << mesh

u_file = d.HDF5File(d.MPI.comm_ world,"./ files /f.h5" "w")
u_file.write(u,"/f")

u_file.close ()

load result():

/- To load from local memory results there were saved with save result.py ####
#

OUTPUT:

u = Finite Element solution

mesh = Finite Element mesh

mesh = d.Mesh(’./files /mesh.xml”)

V = f.FunctionSpace (mesh, ’P’, parameters.poly order)
u = f.Function (V)

16

291

292

294

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

u_file = d.HDF5File(d.MPI.comm_ world,"./ files /f.h5","r")
u_file.read(u,"/f")

u_file.close ()

return u,mesh

7.3 standard_monte_carlo.py

import numpy as np

import parameters

from numpy.random import normal
from tqdm import tqdm

import matplotlib.pyplot as plt

def euler maruyama _step(X,t,dt ,W):

###H+ Euler—Maruyama main step #HHHH#

#

INPUT:

X = current point of the trajectory

t = current time of the state

dt = euler —maruyama discretization step
W = Brownian increments

#

OUTPUT:

X = new point of the trajectory

t = new time of the state

entrance = boolean that states if the particle has entered the well or not

X = X + parameters.u(X)*dt + parameters.sigmaxnp.sqrt (dt)*W # Euler—Maruyama increment

formula
t =t + 1
entrance = False

if (np.linalg.norm(X) < parameters.R): # i.e., if the particle has entered the well
entrance = True

return X,t,entrance

def euler maruyama (X0, dt):

#HH+#+ Euler —Maruyama scheme #4

#

+# INPUT:

X0 = initial point of the trajectory

dt = euler —maruyama discretization step
#

OUTPUT:

entrance = boolean that states if the particle has entered the well or not
T = parameters.T

X = X0

entrance — False

t =0

while (txdt<T and entrance — False):

W = normal (size=2)
X,t,entrance = euler maruyama_step (X, t, dt, W)

return entrance

def standard monte carlo(n _iter ,dt):

17

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

def

def

#HHH+ Standard Monte Carlo main function #4449

#

INPUT':

n_iter = cardinality of the Monte Carlo sample

dt = euler —maruyama discretization step

#

OUTPUT:

result list = list of MC estimations corresponding to each starting point

print (’\n_ _MONTE_CARLO_METHOD_ \n)

result _list = []

for i in range(parameters.X0 MC.shape[0]): # loop over all the starting points
X0 = parameters.X0 MCJ[i ,:|

results = np.zeros(n_iter)
for i in tqdm(range(n iter), desc='X0=("+str(X0[0]) +’,’+ str(X0[1]) +’)’):
results [i] = euler maruyama (X0, dt)

print ('X0=('+str (X0[0]) +’,’+ str(X0[1]) +’):_.’, results.mean() , '+—’, parameters.Zax

results.std () /np.sqrt(n_iter), end="\n")
result list.append(results.mean())
return result list

multiple predictions(n_iter ,dt,ind list ,ind_ type):

4+ To be used to compare results varying n_iter or dt ##H+#

#

INPUT:

n_iter = cardinality of the Monte Carlo sample

dt = euler —maruyama discretization step

ind _list — list of n_iter or dt (w.r.t. the parameter the user wants to vary)
ind _type = ’iter’ or ’time’, the parameter the user wants to vary

results = np.zeros ([parameters.X0 MC.shape[0],len(ind type)])
for i,q in enumerate(ind _list):

print (’\nSIMULATION_’, i+41,’/’ ,len(ind_list))

if (ind_type = ’iter’):

results [:,i] = standard monte carlo(q, dt)
elif (ind type = ’time’):

results[:,1] = standard monte carlo(n_iter,q)

convergence study dt(n_iter, dt_ ref, n_ halfs):

To be used to study the convergence order of the Euler—Maruyama w.r.t dt #4#

#

INPUT:

n_iter = cardinality of the Monte Carlo sample

dt _ref = smallest dt to be adopted

n_halfs = number of times for which dt_ref is divided by 2

halfs = np.array(range(n_halfs)) # a vector for the halvings

results = np.zeros ([n_halfs])

X0 = parameters.X0 IS # for this study, we only use the starting point X0 = (2.5,
dt = dt_ref / pow(2,halfs) # vector with the discretization steps

true_value = 0.0626 # almost exact value obtained from Finite Element method

T = parameters.T

for i in tqdm(range(n _iter)):
X = np. tile (X0, (n_halfs, 1))
t = np.zeros ([n_halfs])
entrance = np.zeros ([n_halfs])

18

2.5)

128

130

131

133

134

22

23

24

25

26

27

28

29

30

31

32

33

34

t _ref = 0 # the refence time for all the trajectories (it coincides with the time of the
finest trajectory)

counter = True

while (counter = True): # one single Monte Carlo iteration is stopped when all the
trajectories are stopped
counter = False

for j in range(n_halfs):
W = normal(size=2) # important aspect: the Brownian increments are the same
if (t_ref % 2%+halfs[n_halfs — j — 1] = 0 and t[j]*dt[j]<T and entrance[j] =
False): # i.e. the standard conditions + the condition related to the number
of halvings
X[j,:],t6[j],entrance[j] = euler_maruyama step(X[j,:],t[j],dt[]j],W)

counter = True
t_ref = t_ref + 1
results = results + entrance # we sum the result of each MC iteration to compute later
the mean
results = results/n_iter # it is now the vector with the MC estimations for all the halvings

plt.figure ()

plt.loglog(dt, abs(results—true_ value), label="error’)

err0 = abs(results[0]—true_ value)

plt .loglog (dt,err0/pow(dt[0],0.5) = pow(dt,0.5) ,label="$\Delta_t"~{1/2}$")
plt.loglog(dt,err0/dt[0]*dt,label="Δ_t ")

plt .loglog (dt,err0/pow(dt[0],2) % pow(dt, 2),label="8\Delta_t"2$")
plt . xlabel ('Δ_t ")

plt .ylabel ('$|p {est}—_p {true}|$’)

plt.title (’Convergence_of_Euler—Maruyama_scheme)

plt .legend ()

plt .savefig("./figures/euler -maruyama—convergence")

7.4 importance_sampling.py

import numpy as np

import parameters

import scipy.stats as st

from numpy.random import normal
import matplotlib.pyplot as plt
from tqdm import tqdm

def euler maruyama IS(XO0,dt,cx,cy):

#HHH+ Variant of the homonymous standard monte carlo.py function ##4##

#

INPUT:

X0 = starting point of the trajectory

dt = euler —maruyama discretization step

cx,cy = Importance Sampling parameters for the importance distribution shifting

#

OUTPUT:

entrancexw = Importance Sampling single sample

sigma = parameters.sigma

u = parameters.u

T = parameters.T

X = X0

R = parameters.R

entrance = False # boolean that states if the particle entered the well or not

t =0

w = 1.0 # the correction term is a product of many terms, we then initialize it to 1
while (t*dt<T and entrance =— False): # the simulation is stopped only if it goes beyond the

time horizon or it enters the well
DW = np.array ([sigma*np.sqrt (dt)*normal () + cxx*dt, sigmasxnp.sqrt(dt)*normal() + cy*dt]) #

2D vecotr of the Brownian increments
X =X + u(X)*dt + DW # main Euler—Maruyama step

19

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

def

def

t =1t + 1

w=w % np.exp((pow((DW[0]—cxx*dt,2) + pow(DW[1l]—cy*dt,2) — powDW[0],2) — pow(DW[1],2))

/ (2%sigmax%2xdt)) # main step for the w calculation , see report for the
explanation

if (np.linalg.norm(X) < R): # i.e. if the particle is inside the well region
entrance — True

return entrancexw

importance sampling(n _iter ,dt,cx,cy):

Important sampling main function ###H#

#

INPUT:

n_iter = cardinality of the Monte Carlo sample

dt = euler —maruyama discretization step

cx,cy = Importance Sampling parameters for the importance distribution shifting
#

OUTPUT:

results.mean() = Importance Sampling estimation

print (’\n_ _IMPORTANCE_SAMPLING_RESOLUTION _\n’)

X0 = parameters.X0_IS

results = np.zeros(n_iter) # the vector with the probability samples
for i in tqdm(range(n iter), desc='X0=("+str(X0[0]) +’,’+ str(X0[1]) +’)7):
results [i] = euler _maruyama_ IS(X0, dt, cx, cy)

print (’X0=('+str (X0[1]) +’,’+ str(X0[1]) +’):_.’, results.mean() , '+—’, parameters.Zax
results.std () /np.sqrt(n_iter), end="\n’)

return results.mean()

best c(n_iter ,dt,c_list ,c_fixed,c_dir):

To be used to compare the variances varying cx or cy parameter ##H

INPUT:

n_iter = cardinality of the Monte Carlo sample

dt = euler —maruyama discretization step

¢ _list = list of cx (or cy) parameters (Importance Sampling parameter for the importance
distribution shifting)

¢ _fixed = the remaining parameter for the importance distribution shifting

c¢_dir = ’x’ or ’y’, the parameter that varies in the list (respectively, cx or cy)

#

OUTPUT:

sigma_list = list of confidence interval semi—amplitude, each one corresponding to one cx
value

sigma_list = [] # list of confidence interval semi—amplitudes, each one corresponding to one
cx value

mean_list = [] # list of IS estimations, each one corresponding to one cx value

X0 = parameters.X0 IS

for ¢ in tqdm(c_list):
results = np.zeros(n_iter)
for i in range(mn _iter):
if (c_dir = ’x7):
results[i] = euler maruyama IS(XO0, dt, c, c_fixed)
elif (c¢_dir = ’y’):
results[i]| = euler maruyama IS(XO0, dt, c_fixed, c)

mean _list.append(results.mean())
sigma_list.append(parameters.Zaxresults.std()/np.sqrt(n_iter))

20

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

plt.figure ()

ax = plt.axes ()

ax.set_title(’ Estimation_comparison_for_Importance_Sampling’)
plt.plot(c_list ,mean list)

plt.xlabel (’c_ '+ c¢_dir)

plt.ylabel ("$p {est}$’)

plt .savefig("./figures /IS means")

plt.figure ()

ax = plt.axes ()
ax.set_title(’Sigma_comparison_for_Importance_Sampling’)
plt.plot(c_list ,sigma _list)

plt . xlabel(’c_’ + c¢_dir)

plt.ylabel (’C.I._semi—amplitude’)

plt .savefig ("./figures /IS sigmas")

return sigma list

7.5 splitting_method.py

import numpy as np

import parameters

from numpy.random import normal

from tqdm import tqdm

import random

import standard monte carlo.euler maruyama step as euler maruyama_step

def euler maruyama(XO0,dt,R):

#HHH+ Variant of the homonymous standard monte carlo.py function ##H##

#

INPUT:

X0 = starting point of the trajectory

dt = euler —maruyama discretization step

R = radius that corresponds to the entrance region (here, for the splitting method,
flexible)

#

OUTPUT:

entrance — boolean that states if the particle has entered the well or not

np.append(X,t) = 3D vector that contains the location and time of the arrival state

T = parameters.T

X = X0[0:2]

entrance = False

t = X0[2]

while (t*dt<T and entrance — False):

W = normal (size=2)
X,t,entrance = euler maruyama_step (X, t, dt, W)

return entrance, np.append(X,t)

def splitting method(n_iter ,dt,n levels):

#HHH+ Splitting method main function #4444

#

INPUT:

n_iter = cardinality of Monte Carlo samples

dt = euler —maruyama discretization step

n_levels = number of splitting method levels (optimal choice = —In(true_ value)/2)
#

OUTPUT:

p = estimated probability

21

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

print (’\n.—_SPLITTING _METHOD.——_\n")

p=1.0

X0 = np.append(parameters.X0 _SM, 0) # 3D vector: x,y,t

starting points = np. tile (X0, (n_iter,1)) # n_ iter copies of X0

dR = (np.linalg.norm(X0)—parameters.R)/(n_levels) # radius constant increment
R = np.linalg .norm(X0) — dR # initial radius

for 1 in tqdm(range(n levels)): # loop over all levels

p_1 = np.zeros(n_iter) # initialization of the probabiliy estimations at level 1
starting points next = [] # the list that will be used in the next level as starting
points
for X _idx, X _1 in enumerate(starting points):
entrance , X _final = euler maruyama(X 1, dt, R)

if (entrance=—True):
p_l[X idx] =1
starting points next.append (X final) # every state that reaches the next level is
added to the starting point list

Pp=p * p_l.mean() # main splitting method passage: product of conditional probabilities
R =R — dR # update the radius for the new level
print ("_Level_probability _=_", p_l.mean())
starting points = random.choices(starting points next ,k=n_iter) # to sample with

repetitions
print ('X0_=_(+str(X0[0]) +’,’+ str(X0[1]) +’):., p)

return p

22

	Introduction
	Goal of the project
	Standard Monte Carlo to simulate from the discretized SDE

	The Feynmac-Kac formula and the Finite Element Method alternative
	The Feynman-Kac equivalence
	Weak formulation of the deterministic problem

	Importance Sampling as variance reduction technique
	General aspects of the Importance Sampling method
	Importance Sampling for the pollutant transport simulation

	The splitting method
	A solution to simulate rare events
	The Splitting Method for distant particle trajectories

	Results
	Finite Element Reference values
	Standard Monte Carlo results
	Importance Sampling results
	Splitting Method results

	Conclusion
	Appendix: Python codes
	parameters.py
	finite_element.py
	standard_monte_carlo.py
	importance_sampling.py
	splitting_method.py

