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1 Part I: Statistical Analysis of Turbulence

1.1 Introduction

This first part regards the classical turbulence theory and a comparison with the results from an ex-
perimental setup executed in the Warhaft Wind and Turbulence Tunnel at Cornell University [4]. In
particular, air is driven by a fan that later passes inside the tunnel and downstream velocity is measured
by 6 anemometers, each one distant 1m from the previous.
In this contest, we aim to compare results with both the classical K41 theory and the classical turbu-
lence decay theory. Before starting with the data analysis, it is however important to assure that the
experimental setup reflects all the necessary conditions that are fundamental for the theory itself.
First of all, since measurements are related to air at an average speed of 10m/s, we can certainly state
that the Reynolds number is sufficiently large to see the effects of turbulence.
In addition, homogeneity and isotropy at small scales cannot obviously be fully satisfied in experiments
(for instance the collisions with the instruments or the not perfect distribution of velocity at the inlet)
but can be reasonably assumed as true in our setup where the inlet from the fan is constant and precise
(and, therefore, the forced turbulence is stationary), the direction of the mean flow is approximately
horizontal (thanks to the grid between the inlet and the tunnel) and the tunnel is large enough. More-
over, turbulence is fully-developed thanks to the reasonable distance of the anemometers from the inlet.
The finite dissipation rate for ν → 0 is usually assumed as valid in experiments, also because it is a con-
dition that was originally inspired from empirical results (and, indeed, its finite value will be reported
in section 1.2.4). Instead, the small scale scaling can be considered true only if the experiment does not
show evidence of intermittency, but this fact will be confirmed in section 1.2.1 and 1.3.1.
Moreover, the driving forces (that in this case are represented by the fan action) are evidently applied
only on large scales and this will seen later in the energy spectrum analysis (section 1.2.3).
As anticipated, the second goal of this part is to analyse in the experiment the characteristics of the tur-
bulence decay under the light of the theory for unforced turbulence. This is the main reason of multiple
measurements at different positions that, therefore, should prove a decay in the turbulence quantities
because of the absence of applied forces except at the inlet. We will see that the data analysis will
be coherent with the theoretical predictions and this means that the conditions of infrared asymptotic
self-similarity and the Principle of Permance of Large Eddies are sufficiently satisfied even in our ex-
perimental setup. We also note that our analysis of both the K41 theory (that is for forced stationary
turbulence) and the turbulence decay (that is turbulence changing in time) is, as usual, justified by the
fact that the power law decay is still very "slow" with respect to the internal turbulence time scales.
To conclude this introduction, all the theoretical assumptions are sufficiently satisfied even if, as usual
in experiments, some conditions are not completely valid but only approximately (see for instance the
Re → ∞ assumption). This fulfilment will lead to the successful achievement of the theoretical predic-
tions and these laws will be reflected by the experimental results except for inaccuracies that will be
justified under the view of measurement imprecisions or the not perfect accomplishment of the above
mentioned theoretical assumptions.
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1.2 Data Analysis

1.2.1 Velocity Signal in the Spatial Domain

The measurements correspond to streamwise velocities detected at a frequency f = 20kHz. This implies
that each measurement follows the previous one after

∆t = 1/f (1)

We can exploit the Taylor frozen hypothesis to detect how much two measurements are distant in space
knowing the time lag. The distance in space between two following measurements is indeed

∆x ≃ − < u > ∆t
(1)= − < u > /f (2)

where < u > is the mean velocity at each anemometer. Therefore, we can now compute the "virtual"
distance in space between two measurements knowing how many measurements there are between them
and vice versa: the number of measurements is exactly the ratio of the space distance over ∆x.
With this preface, we can execute a first analysis showing in Fig. 1 the measurements at each anemome-
ter against the virtual space distance.

Figure 1: PLOT A - Streamvise velocity measurements for each anemometer. The plots are shown with
respect to space thanks to the Taylor frozen hypothesis.

The x values represent the spatial position of the anemometer and the previous 4m as in our choice.
First of all, we notice that the mean velocity is almost constant for each anemometer (≈ 10m/s). This is
expected because of conservation of mass and constant inlet velocity. I.e., the same quantity of air that
goes inside the tunnel should goes outside at the same moment if the density is considered constant or
almost constant. Because the velocity at the inlet is constant, it implies that the mean velocity should
be approximately constant everywhere.
On the other hand, oscillations are more evident in the first anemometer and they later vanish. This
is expected and due to two main reasons: the first one is the difference between the entrance/unstable
region of the tunnel and the fully-developed region where the flow is more asymptotically stable. The
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second reason is instead related to the decay of unforced turbulence. Clearly, the only applied force is
at the inlet of the tunnel where turbulence is therefore more intense.
In Table 1 we instead show the results of mean velocities and turbulence intensities. To obtain them, it
is enough to compute respectively the mean and the standard deviation of the velocities measurements
at each anemometer, indeed:

U := ⟨u⟩ I :=

√〈
(u − U)2

〉
U

Table 1: Mean velocity and turbulence intensity

Param. Dim. A1 A2 A3 A4 A5 A6
d m 1.0 2.0 3.0 4.0 5.0 6.0
U m/s 10.522 10.522 10.521 10.522 10.522 10.522
I adim. 0.1218 0.0548 0.0395 0.0320 0.0271 0.0241

These results clearly confirm the previous discussion: the mean velocity is almost constant in each
anemometer and turbulence intensities instead decrease. Clearly, turbulence intensities are related to
the turbulence decay and the decrease of oscillations in Fig. 1.
We now notice that Taylor frozen hypothesis is just an approximation of the real phenomenon since
turbulence has a certain effect on the flow variations. In general, the approximation is valid if the
turbulence intensity is very small but this is not our case (especially at the beginning where this value
is more than 0.12). Moreover, the turbulence intensity changes a lot in space and this gives incoherent
results: see for instance in Fig. 1 the velocity measurements of the second anemometer at the position
x = −2m. This trend is completely different from the velocity measured in the first anemometer and
associated to the same spatial position. This is because we miss the measurements in the intermediate
positions where turbulence intensities have inevitably different values.
However, the error in the estimation of intermediate velocity profiles can be easily bounded. The mean
velocity is approximately the same in all the positions while the turbulence intensity can be achieved
through an extrapolation. In particular, the turbulence intensity follows a trend similar to the ones
presented in section 1.3 (it is indeed equivalent to the square root of the kinetic energy except for
a constant coefficient). Therefore, from the results in the table and the assumption of the trend, a
regression analysis can be performed to estimate these values in all the intermediate positions.
As a last note, we observe from the previous plots that intermittency is not visible and so we assume it
to be negligible. Hence, the hypothesis of small scale scaling can still be considered as valid.

1.2.2 Correlation Length of the Velocity Signal

The autocorrelation function and the integral scale are defined as:

C(l) := ⟨u(x + l)u(x)⟩
⟨u2(x)⟩ Lint :=

∫ ∞

0
C(l) dl

Moreover, we can approximate Lint with the correlation length LC that is the value for l such that C(l)
drops down to 1/e.
In table 2 we show the measures of the correlation length and the integral scale. To compute the
autocorrelation, we exploited the optimized correlate function from Scipy. To compute the integral
scale, we used the same function followed by a rectangular quadrature formula for the integral. In Fig.
2, we instead graphically show the trend of the correlation length.
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Table 2: Correlation length and integral length

Param. Dim. A1 A2 A3 A4 A5 A6
LC m 0.3667 0.6345 0.7733 0.9039 1.0091 1.0853
Lint m 0.3590 0.6270 0.7684 0.8877 1.001 1.0760

Figure 2: PLOT B - Correlation lengths with respect to the space distance l (blue curves). Orange lines
represent instead the functions e

− l
LC . Finally, the black lines are the associated LC values.

We notice that the two scale lengths are very similar which confirms the fact that the first theoretically
approximates the second. Let us clarify this point. Giving a glance at the plots, we recognize soon
an exponential decay of the correlation function. Not by chance, it is well known that in statistical
mechanics the exponential function with negative exponent is the most general and simple choice for
the trend of the correlation function (see for instance [1]). Since C(0) = 1 always (by definition and
also from the plots) we conclude that it is approximately in the form: C(l) = e−al for a certain steep
coefficient a. It implies that:

Lint :=
∫ ∞

0
C(l) dl ≈

∫ ∞

0
e−al dl = 1

a

We now notice that 1/a is also the value such that C(1/a) = e−1, from here it follows the equivalence
of the two definitions of length scale. In addition, these exponential laws are added to Fig. 2 to show
the effective overlap of the autocorrelation function with its analytical approximation.
Let us now discuss the trend of the lengths. Intuitively, we can say that the decaying of turbulence
implies a stronger correlation between distant points. In other words, when the turbulence is strong,
the noisy dynamics implies the velocity vectors to be almost independent despite they might be close.
Another reason to convince us of this correct trend is the relation between these length scales and the
integral length scale presented in section 1.2.3. We will show later the trend of the latter but we now
anticipate that it will increase following the theoretical predictions. Therefore, LC and Lint correctly
increase as l0 does.
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1.2.3 Energy Spectrum of the Flow

We define the spectral energy density as E(k) := Ẽ(k) + Ẽ(−k) where:

Ẽ(k) := 1
2

∣∣∣∣∣ 1√
2πL

∫ L

0
u(x)e−ikx dx

∣∣∣∣∣
2

and k ∈ R represents the frequencies and L a maximal measurable distance. In Fig. 3 we report the
measured energy spectrum for each anemometer.

Figure 3: PLOT C - Log-log plot of the energy spectrum of the velocity measurements for each anemome-
ter. Also a black line that indicates the −5/3 slope has been inserted.

The energy spectrum has been calculated exploiting the optimized fft algorithm from Scipy for the
positive frequencies and the inverse ifft for the negative frequencies. After that, it is just needed to
sum the two contributions paying attention to consider the correct multiplicative coefficient (i.e. (∆x)2).
As a confirmation, we report here the relative error between

1
2 < u2 > and

∫ ∞

0
E(k) dk

for the first anemometer that turns out to be: 2.47 ·10−7. These quantities should be theoretically equal
because of the Parseval theorem and the relative error is very small because the energy spectrum has
been calculated very precisely using the full dataset (this is indeed possible in short times, i.e. less than
one minute, thanks to the optimized functions cited above).
To conclude the implementation aspects, the original noisy spectrum has been later filtered with a
Savitzky-Golay filter ([2]). More precisely, a standard application of the filter would overshoot in the
left part of the plot because, in a log-log plot with originally equidistant k values, the density of the
number of points increases towards the right part of the plot. Therefore, a regression-based filter as
Savitzky-Golay would be unbalanced in the two different regions. Our proposed solution is to interpo-
late the original spectrum at points that follow an exponential growth so that, in a log-log plot, they
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appear equi-distant and the filter can be then well-balanced.
We can finally comment the plots in Fig. 3 and see how they respect the predictions from the Kol-
mogorov theory. We can indeed clearly distinguish the three regions (from left to right: the large scales
with driving forces, the inertial range and the dissipation region with small scales). In particular, the
inertial range clearly respects the 5/3 law since the straight line is perfectly parallel to the trend of all
the anemometers. Moreover, the large scales lines seem to respect the order predicted in the turbulence
decay theory (indeed, this will be shown later in section 1.3).
From the energy spectrum, we can detect the starting and ending points of the inertial range that
correspond to the integral and Kolmogorov frequencies. These points have been signed in the plot with
black crosses. Finally, from these frequencies, we can get the integral and Kolmogorov length scales
that are reported in table 3.

Table 3: Integral and Kolmogorov length scales

Param. Dim. A1 A2 A3 A4 A5 A6
Lint,E m 2.5133 5.2360 6.2832 6.9813 7.8540 8.3776

ηE m 0.0251 0.0370 0.0419 0.0449 0.0483 0.0524

Reminding what has been discussed in section 1.2.2 about the increase of the correlation length, also
here the length scales increase with the distance d because of the same reason as before.
As a last result, we want to check effectively the relationship between the two integral scales. This is
illustrated in Fig. 4. Here, we show that the two scales are in fact approximately proportional. This
fact should not surprise since turbulence length scales are known to be successfully represented by both
autocorrelation and spectral length scales and therefore they must scale together (see for instance [3]).
To conclude, we observe that every time Lint,E and ηE will be used to achieve new results, we will
always incur in some inaccuracies due to the graphical detection of these values from the plot that, by
its nature, is not precise.

Figure 4: EXTRA - Relation between the integral scale length and integral length of section 1.2.2.
Despite some inaccuracies due to the rough L0 detection on the plot in Fig. 3, the two values are clearly
proportional.
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1.2.4 The Dissipation Rate and Different Reynolds Numbers

We start by defining the energy dissipation rate and the two Reynolds numbers as:

ϵ := 1
2

√
⟨u2⟩3

LC
, Reλ :=

√
⟨u2⟩λ
ν

, Re := u0l0
ν

where λ is the Taylor length scale, ν is the viscosity, u0 is the velocity associated to the large eddies
(i.e. the eddies of length l0 = Lint,E). In table 4 we report these quantities that have been computed
starting from the results of the previous sections.

Table 4: Dissipation rate, Taylor Reynolds and Reynolds numbers

Param. Dim. A1 A2 A3 A4 A5 A6
ϵ m2/s3 2.8708 0.1511 0.0466 0.0211 0.0116 0.0075

Reλ Adim. 969.5 855.4 802.2 780.2 759.1 741.4848821
Re Adim. 3.10 · 105 2.91 · 105 2.53 · 105 2.28 · 105 2.18 · 105 2.05 · 105

We can again give both a physical interpretation and a mathematical explanation to the decreasing
trend of ϵ. First of all, as ϵ represents the rate of turbulent kinetic energy dissipated in thermal energy,
it is clear that the decaying turbulence implies a lower rate of energy shift and then a lower dissipation
rate for higher d. The second motivation is due to the fact that, by definition of ϵ and the previous
relation between length scales, we can state that ϵ ∼ E3/2/l0. Using the rates from the turbulence decay
theory (section 1.3, equations 3, 6), we can soon achieve an order of 2h/(1 − h) for ϵ with respect to d,
therefore a power decreasing law.
Comparing instead the Reynolds numbers, the decreasing trend is again expected from the theory of
turbulence decay and, moreover, Reλ scales as the square root of Re (except for a coefficient ≈ 2) as
predicted from K41.
To conclude, these trends are all coherent with the turbulence decay results and therefore also with the
trend of I from section 1.2.1.

1.3 Turbulence Decay

In table 5 we report the computations of the kinetic energies per unit mass. This is defined as E =
3/2 < u2 > and the 3 factor comes from the number of dimensions. Indeed:

E = 1
2 < u⃗ · u⃗ >= 1

2 < u2
x + u2

y + u2
z >= 3

2 < u2 >

Where the last equality comes from the isotropic assumption. Indeed, what we measure is the streamwise
velocity ux that is assumed to be equal also in the other directions.

Table 5: Turbulence kinetic energy per unit mass

Param. Dim. A1 A2 A3 A4 A5 A6
E m2/s2 2.4641 0.4988 0.2597 0.1701 0.1223 0.096
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We finally report the laws predicted from the theory of turbulence decay:

l0 ∝ (d − d0)1/(1−h) (3)

u0 ∝ (d − d0)h/(1−h) (4)
Re ∝ (d − d0)(1+h)/(1−h) (5)

E ∝ (d − d0)2h/(1−h) (6)
Where d0 and h are constants. In the next paragraphs, we will equivalently analyse the scaling of E
instead of E (indeed, what changes is the approximately constant mass/density term).

First method: The first objective is to find d0 and h from the measurements of E through a fitting
method. Certainly linear regression cannot be used because of the non linearity of the exponent, however
we can notice that:

∃K, d0, b such that E(d) ≈ K(d − d0)b ⇔ ln E ≈ ln K + b ln (d − d0) (7)

Therefore, applying the logarithm to the data, we only have one non-linear coefficient that is d0. The
proposed algorithm is then the following:

1. We iterate over a set of hypothetical values for d0 (numerous enough).

2. For each of these, we compute the optimal K and b through linear regression.

3. Given the choice of d0, K, b, we compute the resulting MSE error.

4. At the end of the loop, we take the d0 that gave the lowest MSE error.

5. We can finally get the associated K and b again from linear regression.

This is a simple and quick algorithm since iterations are performed over only one parameter. The
resulting values are then: d0 ≃ 0.65, h ≃ −1.46. In addition we show in Fig. 5 the successful fitting
method.

Figure 5: EXTRA - Fitting of the turbulence kinetic energy per unit mass. The other dashed lines are
just to show the importance of both k and d0 parameters.

From now on, for simplicity, we will consider the optimal exponent as h = −1.5 = −3/2.
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Second method: Taking again equation 7, we hence have proven that for correct values of d0, b, K
the log-log plot of E against d is approximately a straight line. Fig. 6 shows a log-log plot of E against
(d−d0) for different values of d0. For the same reason as before, only the correct d0 generates a straight
line. Indeed, only the pink and grey lines are close to be straight, therefore d0 is between 0.6 and 0.7
as confirmed by the fitting method. Taking it in the middle (= 0.65), we can estimate q looking at the
slope of the lines. The black line shows the trend of E predicted by choosing the previous value for
d0 and the correct q to have parallel lines. Looking at the numerical values of d0 and q, we conclude
that the graphical and fitting methods are coherent. Indeed, for both, the correct shifting parameter is
approximately d0 = 0.65 and the exponent h = −3/2 ⇔ q = −6/5.

Figure 6: PLOT D - Log-log plot of the measured E with respect to (d−d0) for different d0. As explained
in equation 7, only the correct d0 generates a straight line. Therefore, the correct d0 is between 0.6 and
0.7. Hence, we have chosen d0 = 0.65. After that, the exponent q has been chosen such that the line
has the same slope. Finally, the graphical method prediction is shown through the black line.

Third method: Another confirmation comes from the scaling property:

E ∝ l2h
0 (8)

First of all, we inform that we can replace l0 with LC thanks to the reasons given at the end of section
1.2.3. Therefore, we aim now to study this relation and a comparison between the experimental values
of E against LC is shown in Fig. 7.
The power law of E is evident from the straightness of the line. Moreover, these measures coincide
almost exactly with the ones from the Saffman’s decay under which h = −3/2. This is expected since
we have already shown from the previous methods that h is approximately −1.5.
Seeing the excellent overlapping of the experimental values with the Saffman’s decay predictions, it
should not surprise that the fitting method applied to equation 8 with fixed h = −1.5 returns again a
parameter d0 that is approximately 0.65.
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Figure 7: PLOT E - Log-log plot of the measured E with respect to LC .

Comparison of the methods: To conclude this part about the estimation of d0 and h, we can
observe that the three methods are indeed equivalent since they return the same values (except for
approximations). Advantages and disadvantages of each one are listed below:

• The fitting method is very precise. However, it can be a bit slower if compared to the others
because of the several calculations (even if it is in general quite fast). In addition, it is harder to
interpret results only from the numerical values.

• The graphical method is instead good to interpret results. However, it is not precise at all.

• The relation with L0 is precise and has theoretical supports. However, it restricts to only 3 possible
theories and it is computationally slow as the first method (since it still needs to iterate over d0).

Figure 8: PLOT F - Energy spectrum (already shown in Fig. 3) with the theoretical trend for the large
scales. Despite some noise, the spectrum seems to scale as the predicted trend.
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Turbulence decay and energy spectrum: In Fig. 8 we show again the energy spectrum. This
time we want to study it with respect to the prediction of its trend for large eddies. Despite some noise
(we have already discussed the issue of a fitting/filtering method in a logarithmic scale, see section
1.2.3), the lines seem parallel to the predicted line. Therefore, our theoretical results and the choice of
h = −3/2 seem to confirm again the experiments.

Discussion about the virtual origin d0: The virtual origin d0 is certainly not only a fitting param-
eter but represents, in a certain way, the starting position for the decaying turbulence predicted trends.
In other words, the laws in equations 3, 4, 5, 6 do not have any validity for distances d < d0, neither
mathematically (exponentials of negative bases) nor physically. Until the distance d0, the turbulence
is expected not to freely decay but, instead, to be still forced. This is the reason why our d0 value
is between 0m and 1m, i.e. in the inlet region where applied forces have still a dominant role and
turbulence is not fully-developed.
We expect d0 to be approximately the same for all the above relations (eq. 3, 4, 5, 6) since, the con-
dition of forced/unforced turbulence should hold independently for all the above quantities. Moreover,
mathematically, the cited relations are all achieved from one of those and therefore the d0 is the same
for each one. However, these are scaling relations and there are inaccuracies in the values achieved
for l0 and Re, so we do not expect to achieve experimentally the exact same value of d0 for all these
quantities. We have indeed performed some fitting methods on equations 3 and 5 fixing the exponent
h = −3/2 and we achieved respectively d0 = 0.75m and d0 = 0.25m. Despite these values are not
similar with the previous d0 = 0.65m, we still have values in the same interval 0m − 1m to confirm our
theoretical predictions. In addition, we show in Fig. 9 that the choice for the h value is suitable also
for the l0 and Re values.

(a) Fitting for l0 values (b) Fitting for Re values

Figure 9: EXTRA - Fitting method applied to equations 3 and 5 fixing h = −3/2. We clearly see that
this value for h is well suitable also for these quantities.

1.3.1 Velocity Increments

In Fig. 10 we show the behaviour of the longitudinal velocity increment δv||(x, l) := u(x + l) − u(x) for
the distances l = {1mm, 1cm, 10cm, 10m}.
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Figure 10: PLOT G - Longitudinal velocity increment for different distances l and measured at the first
anemometer.

First of all, considering the turbulent length scales in table 3, we can state that:

• l = 1mm is in the dissipative region (l < ηE).

• l = 0.01m is between the dissipative and inertial region (I ≈ ηE).

• l = 0.1m is in the inertial range (ηE < l < Lint,E).

• l = 10m is in the large scales region (l > Lint,E) even if the two lengths are quite comparable.

Focusing now on the results from Fig. 10, the behaviour is expected since a small l implies strong
similarity between the two measures (that are indeed near in space) where instead a big l implies no
connection and therefore a completely random difference. This kind of reasoning is very similar to the
one made for the autocorrelation functions in section 1.2.2. In both cases, the increase of distance
implies a decrease of correlation.
It is important to notice that this increment of randomness has a limit since two measures that are very
distant in space are completely uncorrelated and so they show the same pattern whatever is the value
of l ≫ 0. As a demonstration, the difference between the case with l = 0.1m and l = 10m is not so
relevant if compared to the upper plots.
To further investigate the properties of δu|| we might wonder whether this has a normal distribution.
To do that, we analyse the trend of the flatness that is defined as:

f(l) :=

〈
δu4

||(x, l)
〉

〈
δu2

||(x, l)
〉2

For a centred normal distribution, the fourth moment is known to be equal to 3σ4 while the second
moment is the variance. Therefore the flatness is 3σ4/(σ2)2 = 3. The flatness of δu|| is instead shown
in Fig. 11.
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Figure 11: PLOT H - Longitudinal velocity increment flatness for different l. It is easy to see the
convergence towards the normal flatness 3.

It is reasonable that the flatness tends to the one from the normal distribution because, as we stated
above, big distances imply differences of independent measures and, hence, normally distributed.
The reason why the flatness is higher for small distances must be associated to the not normality
of δu||(x, l) for small l. In particular, higher flatnesses are characteristic of the so-called leptokurtic
distributions, i.e. distributions that are more squeezed at zero and with fatter tails. An equivalent
interpretation is the presence of more outliers. Therefore, we can reasonably think of δu|| for small l as
more concentrated in zero (see indeed Fig. 10) where, however, there are many outliers due to noisy
turbulent effects. Physically, the difference between two near measures is usually small because of the
high correlation, however, some noisy sudden effects can sometimes cause completely different measures.
To confirm these predictions, also histograms in figure 12 show that distributions for smaller l shrink
more at zero and have more outliers.

Figure 12: EXTRA - Histograms of the longitudinal velocity displacements for different distances l.
Histograms for small l are more shrunk at zero and show more outliers.
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1.3.2 Structure Functions and Energy Dissipation

In Fig. 13 and 14 we show the trend of S2(l) and S3(l) where these quantities are defined as:

Sn(l) :=
〈
δun

||(x, l)
〉

n ∈ N

First of all, we note that S2 successfully satisfies the 2/3 law in a certain range. We know from the K41
that the 5/3 law for the energy spectrum is related to the 2/3 law of S2 (more precisely, from the latter
we can obtain the former with the Wiener formula). We would like to investigate now whether the 2/3
law has the same range of validity of the 5/3 law in Fig. 3. Since these plots are referred to only the first
anemometer, we already computed the Kolmogorov and integral length scale for the first anemometer
as ηE ≈ 0.025m and Lint,E ≈ 2.51m (table 3). The clear 2/3 slope is instead observed in a bit different
range: more or less between 0.01m and 1m. On the other hand, even if it is a little shifted, the two
intervals have the same order of magnitude (indeed they are the same except a coefficient ≈ 2.5).

Figure 13: PLOT I - Second order structure function against distance l. In addition, the theoretical
trend from K41.

The same could be noticed in Fig. 14 for S3 which respects the 4/5 law for a certain range (more or less
[0.07m, 0.7m]) that does not exactly correspond to the one from the energy spectrum but has still the
same order of magnitude. To conclude, trends of S2 and S3 support the K41 and, despite these intervals
do not exactly correspond to the one from E(k), they scale together with a coefficient ≈ 2.5/3.
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Figure 14: PLOT J - Third order structure function against distance l. In addition, the theoretical
trend from K41.

A last notice is about the fact that from S2 and S3 we could potentially achieve a value for the energy
dissipation rate ϵ. Indeed the 2/3 and 4/5 laws state that:

S2(l) = C2ϵ
2
3 l

2
3 and S3(l) = C3ϵl (9)

where C3 = −4/5 and C2 can be assumed to be 2.2. Taking a value for l that is valid for these laws
(e.g. l = 0.07m is in the middle of the validity ranges in Fig. 13 and 14) we can then use the inverses
of the equations 9 to get ϵ. These values are shown in table 6.

Table 6: Dissipation rate value from S2 and S3 relations

Method ϵ value (m2/s3)
Standard definition (from table 4) 2.87

From S2 (2/3 law) 2.97
From S3 (4/5 law) 3.01

These satisfying results confirm again the validity of the theory in our experiment.

15
ME-467 Project 2022, Matteo Calafà, 22.5.2022, 15/26



ME-467: Turbulence
Matteo Calafà

REPORT
Statistics of Turbulence and the Onset of Chaos

1.4 Discussion

In this first part we have comprehensively analysed the dataset from the Warhaft Wind and Turbulence
Tunnel to extract important information related to the turbulence behaviour and compared it with the
classical K41 theory and the turbulence decay theory.
We can conclude that the experiment setup considerably satisfies the assumptions of the theory and
indeed all the cited laws have been successfully observed and confirmed by the results. However, the
experiment does not lack of outcomes that do not completely fit the theory. Most of these are inevitably
due to experimental inaccuracies. For example, one can just think about the detection of the Kolmogorov
and integral length scales in section 1.2.3. A graphical method is certainly not precise and, in addition,
a different smoothing filter would certainly change the values from the ones predicted here. Moreover,
many obtained quantities derive from these length scales or other measurements that are source of error.
It is then easy to conclude that experimental imprecisions are as usual omnipresent and inevitable.
On the other hand, it would be very interesting to investigate whether some mismatched results are due
to systematic errors and not simple experimental imprecisions. The two main examples that we report
are the estimates of d0 for the l0 and Re decay laws in section 1.3 and the ranges of validity for the S2
and S3 laws in section 1.3.2. For these results, it is not clear yet whether inaccuracies are due to a not
perfect fulfilment of the theoretical conditions or, instead, to theoretical laws that are only approximate
(e.g. range of validities for the 4/5 and the 5/3 laws are known to scale together but it is not explicit
to which extent and precision). Hence, we invite further researches to move in this direction.
In any case, our experiment successfully confirmed the main theoretical predictions, both in the case of
K41 theory for forced turbulence and also for the theory of decaying turbulence. Moreover, all the results
that were not directly justified by these theories have been successfully motivated with intuitive, physical
and/or mathematical reasons. To conclude, this experiment fully supports the Saffman’s predictions
for the turbulence decay.
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2 Part II: Nonlinear Dynamics and the Emergence of Chaos

2.1 Introduction

This second part is about the analysis of the dynamics of the generalized Baker’s Maps defined as:

xn+1 =
{

α1xn if yn < β

(1 − α2) + α2xn if yn ≥ β

yn+1 =
{

yn/β if yn < β

(yn − β)/(1 − β) if yn ≥ β

(10)

where the domain is [0, 1] × [0, 1], α1 + α2 ≤ 1 and 0 < β < 1. The visual representation of one step is
shown in Fig. 15.

Figure 15: Graphical representation of the generalized Baker’s Map step.

2.2 Analysis of the Dynamics

2.2.1 Implementation of the Map and (Numerical) Observations

We start by simulating the evolution of this system for some general parameters. A graphical repre-
sentation is shown in Fig. 16. First of all, thanks to the colour distinction, we recognize soon the
equivalence with the dynamics in Fig. 15. At every step, the map firstly separates two regions based
on the vertical coordinate. Later, it horizontally shrinks the two regions based on, respectively, the α1
and α2 parameters. After that, it vertically stretches the two regions and, in the end, it places the two
new regions at the horizontal borders of the square. Further, what we notice is the continuous addition
of new bands that get shorter at every step. The two initial colours, in particular, are separated in all
the following bands.
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Figure 16: Simulated evolution of the map for α1 = 0.3, α2 = 0.2, β = 0.4. 1000 samples are initialized
uniformly in the grid [0, 1] × [0, 1]. The blue points are the ones with initial y0 < β, red points the ones
with y0 ≥ β

.

Quick calculations can show that the map has two fixed points in [0, 0] and [1, 1]. As expected, these
equilibrium points are not stable because they are hyperbolic (indeed, the eigenvalue associated to the
y coordinate is always greater that 1).
Let us now focus on the shape of the attractors for different parameters. These are rectangles that
have the full height but a horizontal length that depends on the parameters and the time step. Looking
again at Fig. 15 we can define explicitly these horizontal coordinates:

• For n = 0: one band from 0 to 1.

• For n = 1: two bands from 0 to α1 and from 1 − α2 to 1.

• For n ≥ 2: the same coordinates as in n−1 multiplied by α1 plus the same coordinates as in n−1
multiplied by α2 and shifted of 1 − α2.

As a confirmation, we have generated the map until step 3 and drawn the expected bands in Fig. 17.
Here, it is evident the above statements are true since all the samples stay inside these borders.
Now that the general structure of the map has been described, we can analyse the chaotic nature of
such system. As a first qualitative description, we take two points that are very close and look at the
evolution of the system for such initial points. Two trajectories of this kind are shown in Fig. 18.
Here it is clear that, despite the initial points are very close, eventually the two trajectories split in
two different paths. We decided to plot explicitly the Euclidean distance between the trajectories for
different parameters. This plot is shown in Fig. 19.
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Figure 17: Simulated evolution of the generalized Baker’s Map (for α1 = 0.4, α2 = 0.3, β = 0.4, 1000
samples) with the predicted coordinates for the bands.

Figure 18: Simulated evolutions taking two very close points, i.e. [0.8, 0.8] and [0.7999, 0.7999] (α1 =
0.3, α2 = 0.4, β = 0.3). The two points eventually take two independent paths.

To conclude, two near points tend to diverge for every choice of the parameters (except for the special
case β = 0.5 as we will see later). Moreover, every trajectory does not convergence and continues to
move in different part of the square (as seen in Fig. 18). We can conclude from these qualitative results
that the generalized Baker’s Map is presumably chaotic.
We remind that, in contrast with continuous systems, a 2-dimensional map can potentially be chaotic.
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Figure 19: Euclidean distances between trajectories starting at [0.8, 0.8] and [0.7999, 0.7999]. Chaos
emerges for every choice of parameters. A lower value for β seems to reduce a bit the speed of divergence
(indeed, as shown later, the positive Lyapunov exponent depends on β).

2.2.2 Strange Attractor and Fractal Dimensions

In this section, we aim to prove that the map attractors are fractals and we aim to study their charac-
teristics. To do that, we restrict our analysis to the case α := α1 = α2. In this case, the bands described
in section 2.2.1 have a simpler form since they are completely symmetric.
We are going now to compute the box counting dimension both analytically and numerically. The idea is
to cover the square with a grid composed by many square boxes, then the dimension is defined as:

D0 := lim
r→0

log(1/N(r))
log r

where r is the length of the little boxes and N(r) is the number of boxes that cover the fractal object.
In this case, nothing needs to be done along the y axis that is always all covered. Therefore, we can
compute the dimension as D0 = 1 + D0,x where D0,x is the dimension if we consider only the x axis. In
addition, it is clear that β has no influence in the box counting dimension (bands coordinates depend
only on α as we saw before).
First of all, let us find a suitable box length for each time step. We aim to get the biggest length such
that boxes are aligned with the bands. In this contest, suppose α ∈ Q, so it is defined by two natural
numbers such that α = a/b. We can recursively observing that:

• n = 0: the band is in [0, 1], therefore one box of length r = 1 contains all the information.

• n = 1: the bands edges are at the coordinates {0, α, 1 − α, 1} = {0, a/b, (b − a)/b, 1}. Therefore,
boxes of length r = 1/b can be perfectly placed to align the bands (a boxes in the first band,
b − 2a boxes in the second, a boxes in the last one.)

• n = 2: the bands edges are at the coordinates {0, α2, (1 − α)α, . . . }. The same reasoning can
be adopted to reveal that r = 1/b2 is a divisor of all the coordinates and therefore boxes can be
aligned with the bands.

• n ≥ 3: by induction, boxes of size 1/bn are aligned with the bands.
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Having detected a good value for the box sizes at each step n, we know perform the recursive box
counting:

• n = 0: one band in [0, 1] and one box in [0, 1] therefore, trivially, 1 box contains all the points.

• n = 1: there are 2 bands of length α. Since boxes and bands of length 1/b are aligned, it means
that every band contains α/(1/b) = a boxes. Therefore, 2a boxes are occupied.

• n = 2: there are 4 bands, each of size α2. Therefore 4 · (α2/(1/b)2) = 4a2 boxes are occupied.

• n ≥ 3: by induction, (2a)n boxes are occupied.

We finally have both the box size and the number of occupied boxes for each n. The resulting box
counting dimension is then:

D0 := 1 + lim
r→0

log(1/N(r))
log r

= 1 + lim
n→∞

log(1/(2a)n)
log (1/b)n

= 1 + log(2a)
log(b)

Let us make some checks with two trivial cases:

1. If α = 1/2, the bands correspond to a full cover of the square at each time step (indeed, α coincides
with 1 − α). Therefore, the attractive set is the full square at every time step. Not by chance,
with b = 2a we get D0 = 1+log(2a)/ log(2a) = 2. I.e., the attractive set is not a strange attractor
but the normal 2-dimensional square.

2. If α = 1/3, one can easily see that the limit to the strange attractor along x is the same as the
construction of the Cantor set (indeed, it starts with three equally wide bands). In this case,
D0,x = log(2)/ log(3) that is the same dimension of the Cantor set.

To achieve a numerical result, we simulate the trajectory for 5 · 106 uniformly distributed initial points
and we use boxes of the size defined above. In particular, we perform the box counting operation for
n = 5. There are other possible choices for n since, from the theory above, for every n ≥ 1 we should
get the same D0. However, we increase the value n to assure the limn→∞ operation. On the other
hand, bigger values for n would imply smaller boxes and therefore huge memory allocations. This is
the reason why we considered n = 5 as a reasonable value.
For the implementation details, it is easy to verify which box the point belongs to using the division of
the coordinate over the box length without the remainder. Results are shown in table 7.

Table 7: Analytical and numerical box counting dimensions

α Theoretical value Numerical value
1/5 1 + log(2)

log(5) ≈ 1.4307 1.4307
1/3 1 + log(2)

log(3) ≈ 1.631 1.631
2/5 1 + log(4)

log 5) ≈ 1.861 1.824
1/2 1 + log(2)

log(2) = 2 2.000

As expected, except for α = 2/5 where some bands are probably not covered by the multiple trajectories,
in all the other cases all the bands are correctly covered by points and therefore the numerical solution
gives the exact analytical solution. Again, the case α = 1/3 and α = 1/2 give the values that are
well-known also without the detailed study of the strange attractors.
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2.2.3 Chaos and Lyapunov Exponents

Other important characteristics of chaotic systems are well described by the Lyapunov exponents. We
aim to compute these values analytically and numerically in the case of α = α1 = α2 and β = 1/2 and
compare with the behaviour of the system. Consider an initial displacement ϵ⃗0 as we already saw in
Fig. 19. Then, the Lyapunov exponent is defined as:

λ := lim
n→∞

lim
ϵ⃗0→0

1
n

log

∣∣∣∣∣∣
n−1∏

j=0
JM (x⃗j)

 ϵ⃗0
|ϵ⃗0|

∣∣∣∣∣∣
where JM represents the Jacobian of the map. We know that for a 2-dimensional map there are 2
Lyapunov exponents and, indeed, the value of λ depends on the choice of the displacement direction.
Let us firstly compute the Jacobian of the map. A quick analysis to equation 10 with the conditions
α = α1 = α2 and β = 1/2 reveals that the partial derivatives are the same in both the cases yn < β,
yn ≥ β. Hence, the Jacobian has the following simple form:

JM (x⃗n) =
[
α 0
0 2

]
∀n ≥ 0

To detect the two exponents, we choose the displacements as parallel to the eigenvectors of JM that are
trivially h⃗1 = [1, 0] and h⃗2 = [0, 1] ∀n ≥ 0. Therefore:

λ1 = lim
n→∞

1
n

log
∣∣∣∣∣
[
αn 0
0 2n

] [
1
0

]∣∣∣∣∣ = lim
n→∞

1
n

log(αn) = log(α) < 0 ∀α ≤ 0.5

λ2 = lim
n→∞

1
n

log
∣∣∣∣∣
[
αn 0
0 2n

] [
0
1

]∣∣∣∣∣ = lim
n→∞

1
n

log(2n) = log(2) ≈ 0.693

As confirmed by the theory, the Lyapunov exponents are represented by the logarithm of the eigenvalues.
These values have also been computed numerically with different choices for the initial displacement ϵ0
and α. Two numerical values are shown. The first one is strictly algebraic: we computed the exponents
with the above definition for a sufficiently large number of matrix products (n = 50) and providing
the Jacobian matrix. The second result is based on the measurement of the displacement between two
trajectories that should theoretically follow a ϵ(n) ≈ eλn trend. Therefore, if we take only few initial
steps, we could do linear regression on the logarithm of the displacement to get an estimate of λ.
Results are shown in table 8.

Table 8: Analytical and numerical Lyapunov exponents for different initial displacements and α (9 time
steps for the regression fit in the second numerical method)

ϵ0 α Theoretical λ Algebraic numerical value Simulation numerical value
[1 · 10−4, 0] 0.4 ≈ {−0.916, 0.693} -0.916 -0.916
[1 · 10−4, 0] 0.2 ≈ {−1.609, 0.693} -1.609 -1.609
[0, 1 · 10−4] 0.4 ≈ {−0.916, 0.693} 0.693 0.693
[0, 1 · 10−4] 0.2 ≈ {−1.609, 0.693} 0.693 0.693

[0.5 · 10−4, 0] 0.4 ≈ {−0.916, 0.693} -0.916 -0.916
[0, 0.5 · 10−4] 0.4 ≈ {−0.916, 0.693} 0.693 0.693

[1 · 10−4, 5 · 10−4] 0.4 ≈ {−0.916, 0.693} 0.693 0.692
[1 · 10−4, 5 · 10−4] 0.2 ≈ {−1.609, 0.693} 0.693 0.692
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Figure 20: Example of the accuracy for the second numerical method (ϵ0 = [1 · 10−4, 5 · 10−4], α = 0.2).
If two trajectories start from very close points and the displacement ϵ(n) is analysed only in the initial
time steps (9 time steps in this case), the trend is approximately eλn as shown by the straight line in the
semi-log-y plot. Therefore, linear regression on the logarithm of ϵ can be performed to get an estimate
of λ. The accuracy of the method is shown by the exact overlap of the trend and its regression line.

Results are obviously expected from the theory. Indeed, every initial displacement that is not parallel
to the first eigenvalue generates a limit that tends to be bigger eigenvalue and, hence, to the bigger
Lyapunov exponent. In formulae, every ϵ⃗0 that is not proportional to [1, 0] returns the second Lyapunov
exponent, otherwise the first. Moreover, the high precision of the two numerical methods is noteworthy.
Let us see now the relation between these values and the chaotic nature of the system. First of all, as
expected, one exponent is positive. Indeed, chaos is generated only if at least one exponent is positive.
Not by chance, the positive exponent is the one related to the y direction. It is indeed in this direction
that bands are stretched while they are shrunk along the x direction. In addition, if we sum the
exponents we get a negative value except for α = 0.5 that gives zero sum. This should not surprise
since, as already seen in Fig. 16 and 17, the total area tends to decrease and therefore the system is
dissipative. On the contrary, the choice of α = 0.5 gives the full cover of the square (fractal dimension
= 2 as seen before) and hence the area is constant and the system conservative.
However, in the specific case of β = 0.5, the system presents a very singular behaviour that can be well
explained by the Lyapunov exponents. First of all, we show in Fig. 21 the trend of the displacement in
this scenario.
The fact that the distance initially increases with the same scale of eλ2n (λ2 = log(2)) is clearly expected
from the theory but what is not expected is the decrease in the second part. This is observed only in
the case β = 0.5 and therefore, it is necessary to look at the law of y more in details. Equation 10
applied to this specific case and only for the y component is the following:

yn+1 =
{

2yn if yn < 0.5
2yn − 1 if yn ≥ 0.5
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Figure 21: Euclidean distances between trajectories starting at [0.8, 0.8] and [0.7999, 0.7999] for β = 0.5
and α = 0.4. Chaos emerges but, after some iterations, the two trajectories come back nearby. In
addition, the increase and decrease of distance follow exactly the two Lyapunov exponents.

What is observed from the simulations is that y eventually gets the exact 0 value. This is clearly not
possible from the theory because the point (x, y) = [0, 0] is not a stable equilibrium point. Therefore,
this result should be motivated by computational reasons. We know that every number y ∈ [0, 1] is
represented by an infinite series of digits {Ii}i∈N such that Ii ∈ {0, 1} and:

y =
∞∑

i=1

Ii

2i

In computer memories, however, this series is not infinite but interrupted at a certain i = N . Let us
see now the effect of the map on one number with this representation. Hence, we take yn in this form
and distinguish the two cases.

1. yn < 0.5: this implies I1 = 0. Therefore:

yn+1 = 2yn =
N∑

i=2

2Ii

2i
=

N−1∑
i=1

Ii+1
2i

2. yn ≥ 0.5: this implies I1 = 1. Therefore:

yn+1 = 2yn − 1 = 2
(

1
2 +

N∑
i=2

Ii

2i

)
− 1 =

N∑
i=2

2Ii

2i
=

N−1∑
i=1

Ii+1
2i

Hence, in both the cases, the following value for y has the same representation except one term of
the sum less. This means that, if y0 is represented by N digits (this depends on the way memory is
allocated), then y1 consists of N − 1 digits, y2 is represented by N − 2 digits until, after N steps, yN is
represented by 0 digits, i.e. yN = 0.
As expected, this is not a result provided by the theory but due to computational reasons. We can now
focus on the role of the first Lyapunov exponent.
We already know that the system is chaotic because of the positive second Lyapunov exponent that is

24
ME-467 Project 2022, Matteo Calafà, 22.5.2022, 24/26



ME-467: Turbulence
Matteo Calafà

REPORT
Statistics of Turbulence and the Onset of Chaos

related to the y direction. However, in this specific case, we know that yn eventually gets the exact
zero value and, so, it will not change its value after the step N . This means that our original system
transforms to a 1-dimensional system where the y component is fixed to zero. Explicitly, the system
becomes: {

xn+1 = αxn

yn+1 = 0
if n > N

It is now easy to compute the dynamics of the system since we can only focus on x. This means that
λ2 does not affect the system no more and the only Lyapunov exponent left is λ1, that is negative.
Therefore, the system cannot be chaotic any more. Indeed, x = 0 is a stable equilibrium point and we
expect trajectories to converge to it. At this point, the speed of convergence is as usual governed by
eλ1n as confirmed in Fig. 21.

2.3 Discussion

In this study we have comprehensively analysed the generalized Baker’s map achieving all the main
properties. We have firstly described its geometry and topology for a general choice of parameters
underlying the chaotic nature and the fractal structure of the limit attractive set. In particular, we
have provided the fractal dimension in the general case α = α1 = α2 is a rational number. The case of
irrational α is not trivial and we motivate future researches to proceed in this direction. In the second
part, we have instead analysed more in details the chaotic behaviour through its Lyapunov exponents.
Moreover, we have discussed and motivated the origin of an unexpected result in the specific case
β = 0.5 that is not predicted from the theory but originates instead from computational reasons. This
last fact should emphasize how computational methods can sometimes be restrictive or even misleading
in the study of a dynamical map. In particular, the correct simulation of a Baker’s map with β = 0.5
is not trivial. However, in all the other cases, computations have made possible to always achieve
numerical confirmations of the theoretical results. Therefore, all the main properties of the map have
been successfully analysed and later confirmed.
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