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Acronyms
FEM Finite Element Method.

KL Karhunen–Loève expansion.

MLMC Multilevel Monte Carlo method.

PDE Partial Differential Equation.

SPDE Stochastic Partial Differential Equation.
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1 Introduction
The modelling and resolution of stochastic partial differential equations (SPDE) using Gaussian
fields as random coefficients have always been of great relevance in many applications such as
geology, hydrocarbon reservoir modelling, meteorology and even biology ([22], [2], [18]). Gaus-
sian random fields appear naturally when representing spatial noises and uncertainty in input
parameters to PDEs such as diffusivity. In this research, we aim to investigate a classical el-
liptic equation with a log-normal random coefficient where the corresponding Gaussian field is
governed by the Matérn covariance function ([25]). Again, the problem is chosen due to the
relevance of the elliptic PDE in the applications areas listed above. Moreover, this model has
already been studied extensively in literature. More precisely, analytical properties such as ex-
istence and uniqueness of the solution have already been proven (see [3]). On the other hand,
recent research is now focused on proposing different numerical methods to deal with non-integer
fractional Laplacian exponents ([23]) to generate Matérn samples with general smoothness. For
instance, [10] introduces and analyses the approximation of the solution using expansions with
Hermite polynomials. [4] describes another type of numerical solution that combines the finite
element method and the rational expansion of x−k. Also, in [5], another method is discussed that
is based instead on a sinc-quadrature for the inverse fractional Laplacian operator. Finally, [11]
presents a full study on numerical solutions using spectral Galerkin methods and also discusses
some important results for more general Galerkin approximations.
In this work, our goal is to study the feasibility and efficiency of a Multi-Level Monte Carlo
method (MLMC, [15], [16]) coupled with a standard Finite Element Method (FEM) to estimate
the statistics of random output quantities of interest of an elliptic PDE with uncertain inputs.
These output quantities of interest are typically functionals of the solution of the SPDE. Instead
of using standard methods for the discrete realizations of Gaussian fields (such as Cholesky fac-
torizations, circulant embeddings or Karhunen-Loéve expansions), we will instead exploit the
fractional Laplacian equivalent formulation from Whittle ([30]). This choice is specific only for
Matérn fields but it is in general less costly than the above mentioned methods. Furthermore,
this method will permit us to employ FEM twice, sharing some elements for both the elliptic
and Whittle problems and, so, saving a noteworthy quantity of memory.
The article is organized in the following way. In section 2 we state the SPDE model we previously
introduced and that we aim to solve. In section 3 we show how the problem can be numerically
discretized presenting both the spatial discretization (using FEM) and the sampling techniques
(using single level or multilevel Monte Carlo methods). In section 4 we report the results we
obtained in the case of single level sampling, i.e. when adopting a standard Monte Carlo method.
These outcomes are also fundamental to analyse in section 5 the more complicated multilevel
approach. Important results and observations as well as critical points will be shown. These
analyses include a detailed study on the mean square error properties pursuing a priori and a
posteriori bounds. Sections 4 and 5 also include descriptions of possible algorithms to generate
both single level and multi level discrete realizations of the white noise.
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2 Formulation of the problem
We present here the analytical formulation of our SPDE problem. The numerical discretization
(section 3) and all the following results on convergence errors and optimal resolution methods
(sections 4, 5) are uniquely addressed to the analytical problem described in this section.

2.1 The model problem
The goal of this research is the analysis and resolution of a standard elliptic problem in divergence
form with Dirichlet boundary conditions and diffusivity defined as a spatial Matérn field. This
system is written explicitly in equation (1).−∇ · (a(x, ω)∇q(x, ω)) = f(x) x ∈ D, ω ∈ Ω,

q(x, ω) = 0 x ∈ ∂D, ω ∈ Ω,
(1)

where D ⊂ Rd is a bounded domain, (Ω, F ,P) is a probability space and q, a : D × Ω → R
are stochastic fields. In particular, a is a log-normal Matérn field ([25]), which means that
a(x, ω) = eγ(x,ω) where γ : D × Ω → R is a Gaussian random field with zero mean and Matérn
covariance function that is defined as:

C(x, y) = σ2

2ν−1Γ(ν)(κr)νKν(κr), r = ||x − y||2, κ =
√

8ν

λ
. (2)

Here, σ2 > 0 represents the variance, ν > 0 is a smoothness parameter and λ > 0 states the
correlation length. In addition, Γ is the Euler Gamma function and Kν is the modified Bessel
function of the second kind. We first note that the correlation is isotropic because it only depends
on the Euclidean distance between the two points.
We report now one of the main properties of this stochastic field.

Proposition 2.1 (Regularity of the Matérn stochastic field samples). The Matérn stochastic
field admits a version whose trajectories belong to C0,ν′(D̄) for all ν ′ < ν.

Proof. We follow some steps from the proof of Preposition 2.1 in [8] that we specialize in the
case of Matérn fields and we generalize to Hölder continuous covariance functions. Notice that
the Matérn function is only a function of r that we will rename C(r). Therefore:

E[|γ(x) − γ(y)|2] =E[γ(x)2] − 2E[γ(x)γ(y)] + E[γy)2]
=2(C(0) − C(r))

=2σ2
(

1 − (κr)νKν(κr)
2ν−1Γ(ν)

)
≤L∥x − y∥2ν ,

where the last inequality comes from the expansions of the Bessel function (see for instance [10]),
and L is a constant that only depends on the field parameters. A simple property of zero-mean
Gaussian random variables states that:

∀p ∈ N, ∃cp > 0 : E
[
|X|2p

]
≤ cpE

[
|X|2

]p
2
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for every mean-free normal random variable X. Therefore, since (γ(x) − γ(y)) is a mean-free
normal random variable, it holds:

E[|γ(x) − γ(y)|2p] ≤ cp(2L)p∥x − y∥2νp.

Hence, Kolmogorov’s continuity theorem states that there exists a version of γ which is in C0,α(D̄)
for every α < 2νp−d

2p
. However, since the result holds for every p ∈ N, we can let p → ∞ and we

get the Hölder continuity for every α < ν.

To conclude this section, we stress again the choice of this model because of its importance in
many science fields such as geology, hydrocarbon reservoir modelling, meteorology.

2.2 The Whittle-Matérn fractional Laplacian equation
Equation (1) can potentially be solved with well-known numerical methods for diffusion equations
followed by a wise sampling strategy. However, sampling techniques usually require the Gaussian
random field a to be discretized as a Gaussian random vector. The simplest method is to discretize
the stochastic field evaluating it only on some specific points and computing the covariance
matrix as Cij := C(xi, xj). Then, the Gaussian vector can be sampled using the HZ product
where H is the Cholesky factorization of the covariance matrix and Z a standard normal sample.
However, the Cholesky factorization of dense matrices could be very expensive (indeed, the cost
scales as the third power of the number of evaluations). Other methods consist in the truncated
expansion through certain basis functions, e.g. Karhunen-Loéve expansions (KL), but generally
they require some demanding calculations as well. The circulant embedding method ([17]) is fast
but restricts to few simple cases, i.e. when the grid is uniform. Therefore, it is not so simple
to choose which method to adopt and, presumably, the most performant strategy in this setting
comes instead from the equivalent formulation given by Whittle ([30]). It can be proven that a
single realization of the Matérn field can be obtained by solving the following fractional Laplace
equation starting from a realization of the white noise:

(I − κ−2∆)ku(x, ω) = ηẆ (x, ω), x ∈ Rd, ω ∈ Ω, (3)

where k = ν/2 + d/4, I is the identity operator and Ẇ is a spatial white noise. η is instead
defined in the following way:

η = σ

σ̂
, σ̂2 = Γ(ν)νd/2

Γ(ν + d/2)

( 2
π

)d/2
λ−d.

Through this equivalent formulation, one can simply generate the white noise to get a realization
of the more complex Matérn field. Obviously, this requires an additional cost to numerically
solve equation (3). In addition, we note two more issues. First of all, the equation involves the
fractional Laplacian (see [23] for the definition) which is in general not straightforward to solve.
Although, the equation is much simpler when k is an integer and it is even a linear diffusion
equation when k = 1. The second issue is related to the definition of the problem on the entire
Rd space. One therefore needs to truncate the domain to solve the problem numerically. We will
show in section 3.1 how to practically solve this difficulty.
On the other hand, this choice is suitable for our type of problem because it employs a finite

3
CSQI Semester Project 2022, Matteo Calafà, 13.6.2022, 3/31



CSQI: Semester Project
Matteo Calafà

REPORT
Solving PDEs with log-normal random field coefficients

element discretization that could be partially used also for equation (1). Moreover, this formu-
lation is very general and only requires the much simpler realization of the white noise.
To conclude, we sum up here the full analytical problem:


−∇ ·

(
eu(x,ω)∇q(x, ω)

)
= f(x) x ∈ D, ω ∈ Ω

(I − κ−2∆)ku(x, ω) = ηẆ (x, ω) x ∈ Rd, ω ∈ Ω
q(x, ω) = 0 x ∈ ∂D, ω ∈ Ω

(4)

3 Discretization of the problem
In this section, we show how to fully discretize the problem in (4) to practically achieve an ap-
proximation of its solution. Because of both the differential and stochastic nature of the problem,
we will start with the numerical schemes and move later to the sampling techniques.

3.1 Truncation of the infinite domain
We start the discretization analysis by noticing that the original definition of the problem as in
(4) is not solvable numerically because of the unbounded domain Rd. What is usually performed
is a truncation to a bounded domain G ⊊ Rd. This approximation is justified by the fact that
equation (1) requires u(x, ω) to be evaluated only on D and not on the full Rd space. There-
fore, a truncation to a bounded domain that is large enough and the addition of homogeneous
boundary conditions turn out to be a reasonable approximation of the original problem. Usually,
homogeneous Dirichlet boundary conditions are preferred (because of their simplicity and the
restrictions to H1

0 spaces). Hence, we report here the truncated version of the original analytical
problem (4):



− ∇ ·
(
eu(x,ω)∇q(x, ω)

)
= f(x) x ∈ D, ω ∈ Ω

(I − κ−2∆)ku(x, ω) = ηẆ (x, ω) x ∈ G, ω ∈ Ω
q(x, ω) = 0 x ∈ ∂D, ω ∈ Ω
u(x, ω) = 0 x ∈ ∂G, ω ∈ Ω.

(5a)
(5b)
(5c)
(5d)

Notice now that the hypothesis that D is a subset of G is clearly necessary to have a Matérn
field that can also be evaluated on D in (5a). Let us see now how concretely this approximation
influences the error with respect to the original system in (4).
We report the error analysis results from [19]. Here, a spectral expansion of the Matérn covariance
function makes it possible to analyse and bound errors in the case of homogeneous Dirichlet,
Neumann or periodic boundary conditions applied to (3). G ⊃ D is defined as a tensor product
domain (0, L)d (i.e., an hypercube of length L) such that the minimum distance from D is δ/2,
δ > 0. Furthermore, l > 0 represents the maximum length of D. More technical details can be
found in [19].

Theorem 3.1 (Truncation stability ([19])). Consider equation in (3) truncated to a bounded
domain G ⊊ Rd with the addition of Dirichlet, Neumann or periodic homogeneous boundary con-
ditions. Define C(x, y) as the original covariance function and CG(x, y) the covariance function

4
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obtained from the truncated domain as in (5). Hence:

∥CG(x, y) − C(x, y)∥L∞(D) ≤ A · σ2Mν(κδ)

where Mν is the unitary Matérn function

Mν(x) := xνKν(x)
2ν−1Γ(ν) ,

A is a constant that depends on the size of D

A = (2d − 1) ·
(

1 + 2dd! · f(l)
(1 − f(l))d

)

and f is defined as f(x) := Mmax{ν,1/2}(κx).

Remark 3.1. It is important to evaluate the error on D because it is where equation (5a) is
solved. As already mentioned, only the evaluation of the Matérn field on D is influential on the
final solution q. With the above hypotheses on the domains, we conclude that G must include
D and, in addition, they cannot coincide.

Remark 3.2. For this result, the domain G is needed to have a tensor-product geometry (i.e.
it must be an hypercube (0, L)d) in order to easily apply spectral methods to prove the error
bound. However, this is usually not strictly required and what is instead the key point of the
hypothesis is the δ/2 distance from D.

Remark 3.3. Observing the error bound, we can see that A is in fact defined as a constant because
it depends only on the Matérn parameters and the geometry of D. What is important instead
is the relation with the geometry of G. This is expressed by the last term that depends on δ
and shows how the error decreases exponentially with respect to the distance between D and G.
Therefore, we conclude that the error is bounded and exponentially decreases as we increase the
size of G ⊋ D. In addition, this result motivates the standard choice of δ/2 ≥ λ (e.g. in [22]) to
have negligible truncation errors.

3.2 Finite element discretization
In this research we work on a finite element space that is general enough but, on the other hand, is
restricted to effective practical considerations. Therefore, as a first observation, our assumptions
do not accept an unbounded domain that is not feasible for implementations. As discussed in
section 3.1, we therefore set our problem in D ⊂ G ⊊ Rd and we then refer to problem (5).
Moreover, we require the domains D and G to be with Lipschitz border and k to be integer. For
the grid, we assume quasi-uniform triangulations T D

h , T G
h that are represented by the average

element edge h > 0. To conclude, we refer to the standard finite element spaces with continuous
functions that are piece-wise polynomials. Explicitly:

Vh = {qh ∈ C0(D̄) : qh|e ∈ Pp(e) ∀e ∈ T D
h },

Wh = {uh ∈ C0(Ḡ) : uh|e ∈ Pq(e) ∀e ∈ T G
h },

(6)

where Pp(e) indicates the space of polynomials of degree at most p ∈ N over the element e.
At this point, we could set the same polynomial degree p = q for the two spaces and hence

5
CSQI Semester Project 2022, Matteo Calafà, 13.6.2022, 5/31



CSQI: Semester Project
Matteo Calafà

REPORT
Solving PDEs with log-normal random field coefficients

construct T D
h to be a subset of T G

h . This choice would computationally save memory and time.
On the other hand, there is no theoretical need to require it as an assumption. We will assume
instead the same polynomial degree p to simplify calculations and notations.
As a last observation, we recall here the main property of the white noise duality on the basis
functions. If {φi}Nh

i=1 represents the set of basis functions for a certain finite element space of
dimension Nh, then:

{< Ẇ , φi >}Nh
i=1 ∼ N (0, M),

i.e. the duality vector is distributed as a zero-mean normal vector with covariance matrix equiv-
alent to the finite element mass matrix M ∈ RNh×Nh (i.e. the matrix defined as Mi,j :=<
φi, φj >L2). This means that white noise has a very simple finite element representation. We
can now proceed to the Galerkin formulation. We define ND

h , NG
h as the dimensions of Vh and

Wh. Moreover, we define as {φi}i=1...ND
h

and {ϕi}i=1...NG
h

their basis functions. For the diffusion
equation we have the usual linear system:

Kuh
qh = f ,

where f is the finite element vector of the known term f , qh is the unknown finite element
vector representing the discretized solution qh and Kuh

is the stiffness matrix obtained from the
discretized Matérn realization, i.e.:

{Kuh
}i,j :=

∫
D

euh(x,w)∇φi · ∇φj dx.

For the Whittle equation, we firstly consider k = 1 in order to have a linear equation. This
choice yields the following simple linear system:(

ING
h

− κ−2K
)

uh = ηZM ,

where ING
h

is the identity matrix of size NG
h ×NG

h , uh is the FEM vector of the discretized solution,
ZM is a normal vector distributed according to N (0, M) and K is the standard stiffness matrix,
i.e.:

{K}i,j :=
∫

G
∇ϕi · ∇ϕj dx.

For a general k ∈ N, one can solve the following recursive system ([22], [12]):
u1(x, ω) − κ−2∆u1(x, ω) = ηẆ (x, ω) x ∈ G, ω ∈ Ω
ui+1(x, ω) − κ−2∆ui+1(x, ω) = ui(x, ω) x ∈ G, ω ∈ Ω, ∀i = 0 . . . k − 1
ui(x, ω) = 0 x ∈ ∂G, ω ∈ Ω, ∀i = 1, . . . k

For a non-integer k, instead, the system to solve is not so simple to write because the main
obstacle is the fractional derivative defined through the Fourier transform ([22]). On the other
hand, different numerical methods have been recently formulated to solve deterministic fractional
Laplacian problems (see for instance [23] and [1]). A specific version for our SPDE equation (5b)
is instead the least-square approximation from [22] in the case of 2k ∈ N. Moreover, [4] presents
a numerical scheme to solve equation (5b) with non-integer k using rational expansions of x−k.
However, in order to work with standard FEM approximations, we restrict ourself to integer
exponents. We refer the interested reader to [23], [1] and [4] for further work.

6
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3.3 Monte Carlo method
In this section and section 3.4 we aim to recall the definitions and main properties of the standard
and multilevel Monte Carlo methods which represent respectively the independent and coupled
sampling techniques. Indeed, these methods permit to deal with the stochastic nature of the
problem returning an estimation of the properties of the solutions. The main difference is that
MLMC is much more efficient but requires correlated solutions from different grid refinements.
We recall now the general definition for the standard Monte Carlo method as described in [21].
Suppose X ∼ D is a random variable following an unknown probability distribution D and P
is a functional of X. Finally, let {Xi}N

i=1 be i.i.d. realizations of X ∼ D. Therefore, the Monte
Carlo estimation for P (X) is:

P MC,N := 1
N

N∑
i=1

P (Xi).

The main advantages of this method are its simplicity and generality. On the other hand,
convergence is quite slow since:

MSE(P MC,N ,E[P (X)]) := E
[(

P MC,N − E[P (X)]
)2
]

= V[P MC,N ] = 1
N
V[P (X)], (7)

which means that the mean square error order is O(N−1).
Alternative methods have been developed to have a faster convergence such as Variance Reduc-
tion techniques and Quasi Monte Carlo methods (see for instance [21], [7]).
To use this method when solving differential equations, for instance equation (1), it is just needed
to compute the sampling mean of the functional evaluated in the set of numerical solutions
{qh,i}N

i=1, where each solution is obtained solving the equation with a different and independent
sampling of a(x, ω).

3.4 Multilevel Monte Carlo method
One powerful technique to improve the standard Monte Carlo method when solving differential
equations is the multilevel version that exploits the correlations of sampling between different
grid levels. In this section, we refer to the original definitions in [15], [16].
MLMC relies on a sequence of approximations qh0 , . . . qhL

on a set of grids with mesh sizes
h0 > · · · > hL > 0. Following the approach of [15], we can estimate E[P (q)] from E[P (qhL

)]
which we rewrite with a telescopic sum as follows:

E[P (qhL
)] = E[P (qh0)] +

L∑
l=1

E[P (qhl
) − P (qhl−1)]

From the last equality, we can infer an unbiased estimator of E[qhL
] defined as:

P MLMC
hL

:=
L∑

l=0
Phl

(8)

where

Phl
=


1
N0

∑N0
i=1 P (q(i)

h0 ) l = 0
1

Nl

∑Nl
i=1

(
P (q(i)

hl
) − P (q(i)

hl−1
)
)

l > 0

7
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In this case, q
(i)
hl

indicates the numerical solution at discretization level hl obtained from the
i-th sampling of the stochastic terms. In other words, the estimator is composed by numerical
solutions at two consecutive grid sizes obtained from the same random sampling. This is opposite
to the standard Monte Carlo where all solutions are sampled independently. In addition, it can be
challenging to define the same stochastic sampling (in our case, the ZM vector) on two different
grids. We postpone the solutions to these numerical challenges to section 5 and we now focus on
the benefits of this method. The main result for the MLMC follows:

Theorem 3.2 (MLMC complexity ([9])). Suppose there exist positive constants α, β, c1,c2 and
c3 such that α ≥ 1

2 min(β, γ) and:

1. E[P (qhl
) − P (q)] ≤ c1h

α
l

2. V[qhl
− qhl−1 ] ≤ c2h

β
l

3. The cost Cl for a single sample P
(
q

(i)
hl

)
− P

(
q

(i)
hl−1

)
is such that Cl ≤ c3h

γ
l

Then, there exists a positive constant c4 such that for every ϵ < e−1 there are values of L and Nl

to make the error of the MLMC estimator in (8) bounded by

MSE
(
P MLMC

hL
,E[P (q)]

)
:= E

[(
P MLMC

hL
− E[P (q)]

)2
]

≤ ϵ2

and its computational complexity bounded by

C ≤


c4ϵ

−2, β > γ,

c4ϵ
−2(log ϵ)2, β = γ,

c4ϵ
−2−(γ−β)/α, 0 < β < γ.

This result is crucial in many problems where, for a fixed computational cost, the estimation can
be much more accurate than the estimations from the standard Monte Carlo sampling method.
The following example makes it evident.

Example 3.1. Consider the following standard linear SDE:

dX(t) = a(t, X)dt + b(t, X)dW (t), 0 < t < T.

We aim to solve it with an Euler-Maruyama scheme (step h) coupled with a standard Monte
Carlo method (N realizations) to estimate E[X(T )]. We can as usual decompose the MSE in
the bias and variance terms. The first term can be bounded because the weak error order of the
Euler-Maruyama scheme is known to be 1 (see for instance [20]). The variance term can instead
be bounded using (7). We finally get that ∃c1, c2 > 0 such that

MSE(XMC
N ,E[X(T )]) ≤ c1h

2 + c2
1
N

If we impose MSE = O(ϵ2) we require h = O(ϵ) and N = O(ϵ−2). This choice inevitably implies
a total cost of C = O(N/h) = O(ϵ−3).
On the other hand, the adoption of a MLMC method improves the cost since Theorem 3.2 holds for
α = 1 (because the weak error order is 1), β = 1 (as a consequence of the fact that the strong error
order is 1/2) and γ = 1 (Euler-Maruyama cost). Therefore, the total cost is C = O(ϵ−2(log ϵ)2)
that reduces by almost 1 order in ϵ the cost induced by the standard method.

8
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We conclude this theoretical recollection anticipating that Theorem 3.2 represents the main goal
for the next sections where we aim to use MLMC’s potentiality for our problem taking care of
respecting the assumptions 1,2,3 in Theorem 3.2.

4 Study on the single level total error
The goal of this section is the achievement of important results regarding the numerical solution
of the problem in (5) using a single level sampling technique as the standard Monte Carlo method.
This is motivated by three different reasons:

• To present results that could be useful in the case one prefers or is obliged to pass to a
single level sampling method (e.g. when just one grid is available or it is demanding to
generate correlated solutions).

• To gradually increase the level of difficulty, starting with the error analysis of a problem
that is much easier than the multilevel one.

• To pursue results that can be used to guarantee the assumption 1 in Theorem 3.2. Namely,
the fulfilment of such assumption for a certain parameter α permits to assure the conver-
gence and, in addition, returns information about the level of accuracy/cost trade-off for
the MLMC applied to our problem.

4.1 Some classical preliminaries
We recall here some classical results that will be used to achieve error bounds in the following
sections. Let us start with the classical finite element a priori bound.

Theorem 4.1 (FEM a priori bound ([27])). Consider the resolution of the following elliptic
problem over a bounded domain B ⊂ Rd:

Find ϕ ∈ V : a(ϕ, v) = F (v) ∀v ∈ V, (9)

where V is a Hilbert space which is subspace of H1(B), a(·, ·) is a continuous, coercive and bilinear
form and F (·) is a linear and bounded functional. Hence, the Lax-Milgram theorem guarantees
the existence and uniqueness of the solution. Consider now a regular triangulation Th of the
domain over which we solve the problem with a finite element method of order r (as presented in
section 3.2). Let ϕ ∈ V the solution of (9) and ϕh ∈ Vh the solution of the FEM method applied
to (9). If ϕ ∈ Hr+1(B), then:

∥ϕ − ϕh∥H1(B) ≤ M

α
Chr|ϕ|Hr+1(B), (10)

∥ϕ − ϕh∥L2(B) ≤ M

α
Chr+1|ϕ|Hr+1(B) (11)

for a certain constant C > 0 independent of h and ϕ and where M, α are the continuity and
coercive constants of a(·, ·). | · |Hr(B) is instead the seminorm of Hr(B).

9
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Remark 4.1. This is certainly a basic result we can use to achieve an a priori bound for our
problem. The main issue, we will see, is how to validate the condition that ϕ ∈ Hr+1(B).

Consider the following weak problem on a bounded domain B ⊂ Rd (elliptic equation in diver-
gence form with homogeneous Dirichlet boundary conditions):

find ϕ ∈ H1
0 (B) :

∫
B

a∇ϕ · ∇v dx =
∫

B
fv dx ∀v ∈ H1

0 (B). (12)

This is the general formulation of our equation in (1). In the following sections, the following
result will also turn out to be fundamental.

Theorem 4.2 (Elliptic stability under diffusivity coefficients). Suppose we aim to solve the
problem in (12) with two different diffusivity parameters, i.e.:

Find ϕi ∈ H1
0 (B) :

∫
B

ai∇ϕi · ∇v dx =
∫

B
fv dx ∀v ∈ H1

0 (B), i = 1, 2.

If f ∈ L2(B), ai ∈ L∞(B) and minx∈B ai(x) > 0 for i = 1, 2, then ϕ1, ϕ2 exist and are unique.
Furthermore:

|ϕ1 − ϕ2|H1(B) ≤ ∥a1 − a2∥L∞(B)
∥f∥L2(B)

minx∈B a1(x) · minx∈B a2(x) .

If, in addition, ai ∈ L2(B) for i = 1, 2 and ϕ2 ∈ W 1,∞(B) , then:

|ϕ1 − ϕ2|H1(B) ≤ ∥a1 − a2∥L2(B)
∥ϕ2∥W 1,∞(B)

minx∈B a1(x) .

Remark 4.2. This is an important result on stability when the diffusivity coefficient a varies.
Under certain regularity assumptions, it guarantees that the two different solutions get closer
when the two coefficients do. This represents a useful result for our problem where the original
diffusivity coefficient is eu(x,ω) is replaced by the numerical solution euh(x,ω). Therefore, to make a
comparison between the analytical and the numerical solution of the original diffusion equation
(1), we firstly need to compare the two different diffusivity coefficients.

Remark 4.3. The second inequality can obviously be rewritten with ϕ1 instead of ϕ2 and a2
instead of a1 because of the complete symmetry when switching the index i.

Proof. Let us firstly define < ·, · > as the standard L2(B) scalar product to simplify the notation.
Now, the problem can be stated as follows:< a1∇ϕ1, ∇v >=< f, v > ∀v ∈ H1

0 (B),
< a2∇ϕ2, ∇v >=< f, v > ∀v ∈ H1

0 (B).

First of all, we notice that the two bilinear forms have continuity constants ∥ϕi∥L∞ < ∞, i =
1, 2. In addition, their coercivity constants are equivalent to minx∈B ai(x) > 0 for i = 1, 2 by
assumption. Moreover, also the functional on the right hand side is bounded by ∥f∥L2(B) < ∞.
Therefore, the hypotheses of the Lax-Milgram theorem holds and existence and uniqueness of

10
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the solutions are guaranteed.
We set now v = e := ϕ1 − ϕ2 and we subtract the equations:

< a1∇ϕ1 − a2∇ϕ2, ∇e > = 0
⇒ < a1∇ϕ1 − a1∇ϕ2, ∇e > + < a1∇ϕ2 − a2∇ϕ2, ∇e > = 0
⇒ < a1∇e, ∇e > = − < (a1 − a2)∇ϕ2, ∇e >

⇒ min
x∈B

a1(x) · |e|2H1(B)
Hölder

≤ ∥a1 − a2∥L∞(B)|ϕ2|H1(B)|e|H1(B)

≤ ∥a1 − a2∥L∞(B)
∥f∥L2(B)

minx∈B a2(x) |e|H1(B),

where the last inequality holds because of the continuity of the solution norm from the Lax-
Milgram theorem. So that, we obtain:

|e|H1(B) ≤ ∥a1 − a2∥L∞(B)
∥f∥L2(B)

minx∈B a1(x) minx∈B a2(x) .

The second result can be easily obtained if we use Hölder inequality in a different way. More
precisely, we can bound the right hand side term with:

< (a1 − a2)∇ϕ2, ∇e > ≤ ∥a1 − a2∥L2(B)∥∇ϕ2∥L∞(B)|e|H1(B).

A last result we will partially use for the study of the posteriori bound is the following.

Theorem 4.3 (Error indicators for elliptic problems ([6], [27])). Suppose we aim to solve the
same elliptic problem as in (12) where the hypotheses for existence and uniqueness hold and
a ∈ L∞(B) is piecewise smooth on a non-degenerate mesh Th. If ϕ ∈ V is the exact solution of
(12) and ϕh ∈ Vh is the finite element solution, then:

|ϕ − ϕh|H1(B) ≤ β

minx∈B a(x)

∑
e∈Th

[Ee(ϕh)]2
1/2

,

where β is a constant that only depends on the non-degeneracy of the mesh and Ee is the error
indicator defined as:

Ee(ϕh) := he∥f + ∇ · (a∇ϕh)∥L2(e) + 1
2h1/2

e ∥[an · ∇ϕh]n∥L2(∂e),

where n is the normal vector to the surface ∂e, he is the size of the element e ∈ Th and [·]n is
the discontinuity between adjacent elements along the n direction.

Remark 4.4. The formula for Ee can be interpreted in the following way: the first part is the
residual to the equation in the strong form and the second represents the discontinuity between
adjacent elements.

Remark 4.5. This result is basic and general since it can be adapted to multiple linear differential
equations. However, we anticipate that the assumption of f ∈ L2(Ω) is not suitable for equation
(3) where the sampled white noise can only be treated as a functional.

11
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4.2 Definition of the solution error
We define in this section the error we aim to control in order to assure convergence and regularity
of the numerical solution. We remind that, for now, we study the approximation error for a
solution obtained from the finite element method as defined in section 3.2 and a standard Monte
Carlo method as defined in section 3.3. Let q the analytical stochastic solution of (5), qh the
numerical stochastic solution obtained with a mesh size h and qMC,N

h the N -samples Monte Carlo
estimation of qh. A possible straightforward choice is a slight generalization of the Mean-Squared
Error (MSE) already defined in section 3.3:

MSEL2(D)(qMC,N
h ,E[q]) := E

[
∥qMC,N

h − E[q]∥2
L2(D)

]
.

Simple calculations show that a variance-bias decomposition holds also with this definition,
indeed:

MSEL2(D)(qMC,N
h ,E[q]) = E

[ ∫
D

(
qMC,N

h − E[qh]
)2

dx

+
∫

D
(E[qh] − E[q])2 dx

+
∫

D
2(qMC,N

h − E[qh])(E[qh] − E[q]) dx
]

=
∫

D
V[qMC,N

h ] dx +
∫

D
(E[qh − q])2 dx + 0

=

V ariance︷ ︸︸ ︷
||V[qh]||L1(D)

N
+

Bias︷ ︸︸ ︷
||E[qh − q]||2L2(D) .

Previously, we used the Fubini’s theorem.
Equivalently, one can get:

MSEH1(D)(qMC,N
h ,E[q]) := E

[
|qMC,N

h − E[q]|2H1(D)

]
=

V ariance︷ ︸︸ ︷∑d
i=1 ||V[∂iqh]||L1(D)

N
+

Bias︷ ︸︸ ︷
|E[qh − q]|2H1(D)

under some regularity assumptions, where ∂iqh indicates the partial derivative and | · |H1(D) the
H1(D) seminorm. Henceforth, the MSE with the H1 seminorm will be preferred because the
latter represents the space where to set the weak formulation of problem (5).
The main advantage of such a decomposition is the following: this splitting separates the part
that can be improved with a greater number of samples from the bias that instead only depends
on the accuracy of the numerical solution. In other words, we can formally analyse the bias term
without considering the sampling error due to the Monte Carlo estimation.
From these observations, assuming the variance of qh to be approximately constant for small
h, we can therefore proceed to analyse only the second part of the error that is strictly related
to the finite element approximation. At this point, we note that this component is an L2/H1-
generalization of the weak error between the analytical solution and its stochastic numerical
approximation. Furthermore, the following result holds thanks to a double application of the
Jensen’s inequality:

|E[qh − q]|2H1(D) ≤ E
[
|qh − q|H1(D)

]2
≤ E

[
|qh − q|2H1(D)

]
, (13)
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that is a bound of the generalized weak error with the associated generalized strong error.
In this section, we motivated the choice of the generalized weak error as the main object to study.
Indeed, it represents the main numerical influence in the MSE total error while the remaining
part is only related to the precision of the sampling method. This latter quantity decreases as
N−1 and does not require necessary further studies. In addition, possible bounds for the strong
error hold also for the weak error because of (13) and therefore one can potentially work with all
the three definitions of error shown in (13). Finally, the weak error also reflects the hypothesis
1 of Theorem 3.2 and, so, the achievement of explicit bounds may allow us to derive results on
the MLMC efficiency.

4.3 A priori bound
In this section, we aim to exploit the above mentioned results (section 4.1) to get an explicit
a priori bound to the weak error. Since we deal with a finite element discretization applied to
two coupled problems (respectively, (1) and (3) that give (5)), it could be useful to present the
following nomenclature.

Definition 1. For the error analysis of problem (5), we define:

i) V := H1
0 (D), W := H1

0 (G), i.e. the reference spaces for the solutions of the problem in (5).
Moreover, we define ∥ · ∥V as the H1(D) seminorm.

ii) Vh, Wh are the associated finite element spaces as defined in (6) for a certain polynomial
degree p ∈ N.

iii) q(·, ω) ∈ V, u(·, ω) ∈ W represent the analytical solutions to problem (5).

iv) uh(·, ω) ∈ Wh is the finite element solution of the equations (5b) and (5d).

v) q̂h(·, ω) ∈ V is the analytical solution of (5a) and (5c) when one takes uh instead of the
analytical solution u.

vi) qh(·, ω) ∈ Vh is the fully numerical solution of (5).

The (·, ω) notation is needed to indicate that these solutions are stochastic fields that, P almost-
every ω ∈ Ω, are functions belonging to the specified spaces.
The reason of considering the semi-discrete solution q̂h is based on the following error decompo-
sition based on the triangular inequality:

E[∥qh − q∥2
V ] ≤ E[∥qh − q̂h∥2

V ] + E[∥q̂h − q∥2
V ] (14)

It is useful to separate the two components since the first error represents the discretization error
due to T D

h while the second is the discretization due to T G
h . Henceforth, we will work on the two

components separately.
A last result we report before the achievement of the a priori bound is a regularity property of
two terms that will represent the boundedness and coercivity constants of problem (5).

Proposition 4.1. Let (Ω, F ,P) be a probability space, let γ : Rd × Ω → R be a Gaussian field
and B ⊂ Rd. Hence:

e∥u(·,ω)∥L∞(B) , e−∥u(·,ω)∥L∞(B) ∈ Lr(Ω) ∀ 0 < r < ∞
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Proof. Similar to the proof of Proposition 2.2 in [8]. It is a simple application of Fernique’s
theorem ([13]).

We can now give the first significant result related to our problem.

Proposition 4.2. Let qh ∈ Vh, q̂h ∈ V and uh ∈ Wh be defined as in Definition 1. Let the finite
element discretization T D

h on D have a grid size h > 0 and the Vh space composed by polynomials
of degree at most p ∈ N . Assume q̂h ∈ L4(Ω, Hp+1(D)). Then:

E
[
∥qh − q̂h∥2

V

]
≤ E

[
e8∥uh(·,ω)∥L∞(D)

] 1
2 E

[
∥q̂

(p+1)
h ∥4

L2(D)

] 1
2 h2p,

E
[
∥qh − q̂h∥2

L2(D)

]
≤ E

[
e8∥uh(·,ω)∥L∞(D)

] 1
2 E

[
∥q̂

(p+1)
h ∥4

L2(D)

] 1
2 h2p+2.

Proof. This results is a direct application of Theorem 4.1. Suppose for now to fix ω ∈ Ω as
to analyse the solution for a single realization. qh(·, ω) and q̂h(·, ω) represent respectively the
numerical and analytical solution of the same problem:−∇ ·

(
euh(x,ω)∇q̂h(x, ω)

)
= f(x) x ∈ D, ω ∈ Ω,

q̂h(x, ω) = 0 x ∈ ∂D, ω ∈ Ω.

Therefore, we can apply Theorem 4.1 if we guarantee the boundedness and coercivity of the
bilinear form. As already discussed in the proof of Theorem 4.2, the boundedness and coercivity
constants are respectively

M = max
x∈D

(
euh(x,ω)

)
= emaxx∈D(uh(x,ω)) ≤ e∥uh(·,ω)∥L∞(D) ,

α = min
x∈D

(
euh(x,ω)

)
= eminx∈D(uh(x,ω)) ≥ e−∥uh(·,ω)∥L∞(D) .

(15)

Hence, Theorem 4.1 holds for the single realization and gives:

∥qh(·, ω) − q̂h(·, ω)∥V ≤ e2∥uh(·,ω)∥L∞(D)∥q̂
(p+1)
h ∥L2(D)h

p,

⇒ E
[
∥qh(·, ω) − q̂h(·, ω)∥2

V

]
≤ E

[
e4∥uh(·,ω)∥L∞(D)∥q̂

(p+1)
h ∥2

L2(D)

]
h2p

≤ E
[
e8∥uh(·,ω)∥L∞(D)

] 1
2 E

[
∥q̂

(p+1)
h ∥4

L2(D)

] 1
2 h2p,

where in the last line we apply Cauchy-Schwartz inequality. The second bound can be obtained
by repeating the previous steps using result (11) from Theorem 4.1.

Remark 4.6. This proposition provides an a priori bound for the first term of (14). It states that
the error decreases with an order of hp. A note is that this rate only depends on the discretization
order in the diffusion problem (1) and not on the order of the Whittle equation (3) discretization.

Remark 4.7. The drawback is instead related to the strong assumption on q̂h that is challenging
to prove formally (even if in practical situations the property holds true). Another observation
is related to the assumption that the constant E

[
e8∥uh(·,ω)∥L∞(D)

]
is finite. This has not been

formally proven yet but it is assumed to be true since the same quantity with uh replaced by u is
finite thanks to Proposition 4.1. In addition, the same quantity can be easily estimated through
sampling methods as presented in section 3.3 and section 3.4.
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We can now proceed with the second error term in (14).

Proposition 4.3. Let q̂h ∈ V, q ∈ V, uh ∈ Wh and u ∈ W be defined as in Definition 1. Let
f ∈ L2(D) be as usual the forcing term in equation (5). We have that:

E
[
∥q̂h − q∥2

V

]
≤ ∥f∥2

L2(D)

(
E
[
∥uh(·, ω) − u(·, ω)∥4

L∞(G)

]) 1
2
(
E
[
e4γu(ω)

]) 1
2 , (16)

where:

γu(ω) := ∥uh(·, ω)∥L∞(G) + ∥u(·, ω)∥L∞(G) + max{∥uh(·, ω)∥L∞(G), ∥u(·, ω)∥L∞(G)}.

Proof. This bound is an application of Theorem 4.2. Indeed, qh and q̂h are the analytical solutions
to the same problem but with different diffusivity coefficients, respectively u and uh. As we did
in the previous proof, we start by analysing the single realization ω ∈ Ω. Theorem 4.2 states
that:

∥q̂h(·, ω) − q(·, ω)∥V ≤ ∥euh(·,ω) − eu(·,ω)∥L∞(G) · ∥f∥L2(D) · e∥uh(·,ω)∥L∞(G) · e∥u(·,ω)∥L∞(G) ,

where the rightmost terms are again due to the inequalities in (15).
For the integral mean theorem, ∀x, y ∈ R ∃ x ≤ ξ ≤ y such that∫ y

x
et dt = (y − x)eξ ⇒ |ey − ex| ≤ |y − x|emax{x,y} ∀x, y ∈ R.

Applied to the first term of the bound:

∥euh(·,ω) − eu(·,ω)∥L∞(G) ≤ ∥uh(·, ω) − u(·, ω)∥L∞(G)e
max{∥uh(·,ω)∥L∞(G),∥u(·,ω)∥L∞(G)},

and hence, the second term can be bounded by:

∥qh(·, ω) − q(·, ω)∥V ≤ ∥uh(·, ω) − u(·, ω)∥L∞(G) · ∥f∥L2(D) · eγu(ω),

where:
γu(ω) := ∥uh(·, ω)∥L∞ + ∥u(·, ω)∥L∞ + max{∥uh(·, ω)∥L∞ , ∥u(·, ω)∥L∞}.

Finally, we can apply the expectation E and we get:

E
[
∥qh − q∥2

V

]
≤∥f∥2

L2(D) · E
[
∥uh(·, ω) − u(·, ω)∥2

L∞(G) · e2γu(ω)
]

≤∥f∥2
L2(D) ·

(
E
[
∥uh(·, ω) − u(·, ω)∥4

L∞(G)

]) 1
2
(
E
[
e4γ(ω)

]) 1
2 ,

where in the last line we apply the Cauchy-Schwartz inequality.

Remark 4.8. Proposition 4.2 and 4.3 give bounds for the L2(Ω, V ) norms of the error but one
can also easily achieve bounds for the the L1(Ω, V ): it is just needed not to square the left and
right terms of the inequality before the application of E.

Remark 4.9. We already know that the last term of the bound in (16) is a finite constant.
Moreover, in practice, it can be approximated by γu(ω) ≈ γ̂u(ω) := 3∥u(·, ω)∥L∞(G).
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On the contrary, the term in the middle is known to be finite but requires a further study in
order to achieve a complete a priori bound. For this purpose, we present here an important result
from [11] that gives a bound in the Hölder norm.

Theorem 4.4 (Theorem 6.23 from [11]). Let u ∈ W and uh ∈ Wh be defined as in Definition
1, the finite element polynomial order p = 1 and d = 1. In addition, let D ⊂ Rd be a bounded
polytope with Lipschitz border. If 0 < λ ≤ 1/2 is such that 2k > λ + 1/2 and δ ∈ (0, λ), the
following bound holds: (

E[∥uh − u∥r
C0,δ(D̄)]

)1/r
≤ Chmin{2k−λ−1/2−ϵ,3/2−λ}

for a certain constant C > 0 that does not depend on h or the solution, and for every r, ϵ > 0.

Remark 4.10. The original theorem dealt with “generalized” Matérn fields. Therefore, the state-
ment in [11] requires further assumptions that are actually automatically satisfied by our standard
Matérn field (in particular, about the regularity of the differential operator in (5b)). In addition,
it is valid for k ∈ R despite we initially restricted ourself to k ∈ N in order to work with only
standard finite element methods. In the case of non-integer k, the theorem holds when equation
(5b) is solved using a sinc-quadrature method presented in [5].

Remark 4.11. Despite its generality under the view of finite element spaces and Matérn fields,
the main drawback is the assumption of p = d = 1. It is presumable that an L∞ bound works
also in higher dimensions and higher polynomial orders but, however, it has not been proved yet.

We can finally present the full a priori bound.

Theorem 4.5 (A priori bound). Let the definitions and assumptions of Proposition 4.2, Propo-
sition 4.3 and Theorem 4.4 hold for a grid size h > 0, polynomial order p = 1, dimension d = 1
and k > 1/4. Then, there exists a constant C > 0 independent from h such that:

E[∥qh − q∥2
V ] ≤ Chmin{4k−1−ϵ,2} (17)

for every ϵ > 0 small enough.

Proof. We are required to split the error in two parts as in (14). Then, we can apply Proposition
4.2 on the first part and Proposition 4.3 on the second part. From the second part of the error,
we can use Theorem 4.4 to bound the following term:(

E
[
∥uh(·, ω) − u(·, ω)∥4

L∞(G)

]) 1
2 .

More precisely, we apply the limit δ → 0 and we set r = 4. Therefore, the error is bounded by:

E[∥qh − q∥2
V ] ≤ C1h

2 + C2h
min{4k−2λ−1−ϵ,3−2λ}.

At this point, we can set 2δ = λ < ϵ. The condition δ ∈ (0, λ) is so automatically satisfied and
the new bound can be rewritten as:

E[∥qh − q∥2
V ] ≤ C1h

2 + C2h
min{4k−2λ−1−ϵ,3−2λ} ≤ C1h

2 + C2h
min{4k−1−3ϵ,3−2ϵ}

under the condition of k > ϵ + 1/4 and ∀ϵ ∈ (0, 1
2). In addition, one can easily show that the

condition on k can be relaxed with k > 1/4 for every ϵ. To conclude, for ϵ small enough, the
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(3 − 2ϵ) exponent is no more effective if compared to h2 on the left. Therefore, we obtain a final
bound similar to equation (17).

Remark 4.12. Theorem 4.5 gives an explicit rate to the a priori bound. This depends on the
parameter k of the Matérn field. Indeed, we have already discussed in section 3.2 that the
fractional exponent k has an important role in the numerical discretization of equation (5b) and,
therefore, also the finite element method convergence rates depend on it.

At this point, one can investigate how the strong error order explicitly depends on k.

Corollary 4.1 (Order of the H1 strong error). Let the same definitions and assumptions of
Theorem 4.5 hold. Then:

(
E[∥qh − q∥2

V ]
)1/2

=
O(h2k−1/2−ϵ) k ∈ (1

4 , 3
4 ], ϵ > 0,

O(h) k ∈ (3
4 , ∞).

Proof. Simple calculations from the exponent in equation (17) yield the result.

Remark 4.13. As mentioned before, the fractional exponent k has a specific role in the conver-
gence rate. In particular, a smaller k decreases the regularity of the solution and worsens the
convergence rate.

4.4 Studies on the a posteriori bound
After the achievement of an explicit expression for the a priori bound of the discretization error,
we present in this section what has been partially developed to get an a posteriori bound of the
same quantity.
As for section 4.3, we start from the first part of error in (14).

Proposition 4.4. Let qh ∈ Vh, q̂h ∈ V , uh ∈ Wh be defined as in Definition 1. Assume that
T D

h ⊃ T G
h |D. Therefore:

E[||q̂h − qh||V ] ≤ β
(
E
[
e2∥uh(·,ω)∥L∞(G)

]) 1
2

∑
e∈Th

Ēe,2(qh, uh)
 1

2

,

where β is a constant that only depends on the non-degeneracy of the mesh and Ēe,2(qh, uh) is the
second moment of Ee(qh, uh) that is defined as:

Ee(qh, uh) := he∥f + ∇ · euh(x,ω)∇qh∥L2(e) + 1
2h1/2

e

∥∥∥[n · euh(x,ω)∇qh

]
n

∥∥∥
L2(∂e)

,

where he is the size of the element, ∂e is its surface, n is the normal vector to ∂e and | · |n is the
discontinuity between adjacent elements along the n direction.
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Proof. We already discussed in the previous sections that:

max
x∈G

(
euh(x,ω)

)
≤ e∥uh(·,ω)∥L∞(G) < ∞ P a.e. ω ∈ Ω

since it belongs to Lr(Ω) ∀r > 0 thanks to Proposition 4.1. It follows that:

min
x∈G

(
euh(x,ω)

)
≥ e−∥uh(·,ω)∥L∞(G) > 0 P a.e. ω ∈ Ω.

In addition, the diffusivity coefficient euh(x,ω) is clearly smooth piece-wise because it belongs to
Wh and we have the hypothesis that T D

h ⊃ T G
h |D . Hence, we can take a single realization ω ∈ Ω

and apply Theorem 4.3 to arrive at the following bound:

||q̂h − qh||V ≤ β

minx∈G euh(x,ω)·

 ∑
K∈Th

[Ee(qh, uh)]2
 1

2

≤ β · e∥uh(·,ω)∥L∞(G)

 ∑
K∈Th

[Ee(qh, uh)]2
 1

2

.

We can now apply the average operator and use the Cauchy-Schwartz inequality to achieve the
expected bound:

E[||q̂h − qh||V ] ≤ E

β · e∥uh(·,ω)∥L∞(G)

 ∑
K∈Th

[Ee(qh, uh)]2
 1

2


≤ β · E
[
e2∥uh(·,ω)∥L∞(G)

] 1
2 E

 ∑
K∈Th

[Ee(qh, uh)]2
 1

2

= β · E
[
e2∥uh(·,ω)∥L∞(G)

] 1
2

 ∑
K∈Th

Ēe,2(qh, uh)
 1

2

.

Remark 4.14. This result can clearly give some useful information to perform mesh adaptivity
on D. A practical strategy could be the following: fixing the geometry of T G

h , one can consider
the first two terms of the bound as constants while the averaged indicators Ēe,2 can be estimated
from different realizations and computations of (uh, qh) with a sampling technique such as the
standard Monte Carlo method.

We are interested to get a similar result for the second part of error, i.e. ∥q̂h − q∥V . We
have already seen that we can bound this quantity with the error of the generated Matérn field
∥uh − u∥L∞(G). Therefore, an a posteriori bound on this term would have two utilities: provide
an a posteriori bound to the total error and return information to perform mesh adaptivity on
G instead of D.
However, there are two main difficulties that make this objective challenging. First of all, we
need to provide a bound in the L∞ norm. Although this is more challenging than bounds for
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standard norms, multiple recent works have proposed different a posteriori bounds suitable for
these needs. We cite for instance [26] and [14]. Nevertheless, we face another issue that is
the applications of these methods only to classical linear or quasi-linear equations. This is too
restrictive for our problem where equation (3) is in general fractional and certainly non linear
(except for k = 1). In addition, it presents a forcing term (the white noise) in a functional form.
In particular, the second point is problematic since most of the a posteriori bounds present the
equation residual in a strong form (also in Theorem 4.3).
On the other hand, the best mesh refinement could be deduced from what we know about the
properties of the Matérn field (i.e. the analytical solution) and not necessarily from the numerical
a posteriori results. First of all, recall that the field is homogeneous. However, we still have to
consider two collateral facts: first of all, the solution uh is defined on G but influences the solution
qh only when evaluated in D. Secondly, there are artificial homogeneous boundary conditions
at a certain distance from D. From these observations, it is clear that the central region of G
(the one corresponding to D) should be privileged with respect to the areas close to the border.
However, this study would presumably require an extensive analysis that we prefer not to tackle
in this paper and focus instead on other computational aspects. Although, we recommend future
research to achieve this objective with possible concrete results.

4.5 The optimized mixed-mass single level generation method
To conclude this section about the numerical resolution of the problem in (5) with a single grid
level h, we introduce a method originally presented in [12] to generate white noise on finite ele-
ment spaces in optimal times.
We recall that the application of the white noise on the basis functions is represented by a nor-
mal vector distributed as N (0, M), where M is the mass matrix of the finite element space (see
section 3.2). Therefore, to fully estimate E[P (q)], where q is the analytical solution of (5) and P
is a functional of q, we first need to generate independent samplings of this normal vector.
The following algorithm is the standard choice for the generation of a random vector ∼ N(0, M).

Algorithm 1 Standard method to generate white noise on finite element spaces
Compute H such that HHT = M (Cholesky factorization)
Generate Z ∼ N(0, I)
Compute ZM = HZ
Return ZM

This algorithm returns a vector that is correctly distributed thanks to the properties of the
covariance matrix of normal vectors. However, the Cholesky factorization cost could be very
demanding (≈ O(N3

h)) if the number of degrees of freedom Nh is very high.
The algorithm proposed by [12] is based on the properties of the mass matrix itself. Namely,
if me is the number of degrees of freedom for each element, n is the number of elements, then
M ∈ RNh×Nh can be proved to satisfy:

M = LT diag(Me)L,

where L ∈ Rnme×Nh is built as LT = [LT
1 . . . LT

n ] so that Le ∈ Rme×Nh is a boolean matrix that
represents the local-to-global map. Furthermore, diag(Me) ∈ Rnme×nme is the block diagonal
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matrix composed by the local mass matrices. Hence, the Cholesky matrix can be computed
as:

H = LT diag(He),
where diag(He) is the block diagonal matrix with the Cholesky factorizations of the local mass
matrices Me. We resume the steps of such algorithm.

Algorithm 2 Mixed-mass single level generation method ([12])
Compute He such that HeH

T
e = Me ∀e ∈ Th (Cholesky factorization)

Compute L as local-to-global map
Compute H = LT diag(He)
Generate Z ∼ N(0, I) (of size Nh)
Compute ZM = HZ
Return ZM

One can easily check that this strategy yields a factorization cost of O(m3
eNh) against the O(N3

h)
of Algorithm 1. It is now evident that, if the number of elements is sufficiently high, the compu-
tational benefit of this second method is noteworthy.

5 Study on the multi level total error
After the discussion on the error induced by the numerical resolution on a single level h > 0, we
motivate in this section the utility of such analysis for a multilevel approach as presented in section
3.4. Later, we will present two algorithms that permit to generate correlated white noises on two
different mesh refinements. Therefore, from the numerical discretization presented in section 3.2,
the MLMC method introduced in section 3.4 and one of the following two algorithms, one can
effectively perform a multilevel numerical estimation of problem (5).

5.1 The utility of single level results for multilevel methods
As already mentioned, the results in section 4 are not only of practical utility to perform single
level estimations of the stochastic solution, but also permit us to improve the estimation effi-
ciency and accuracy when performed with multilevel methods. Let us start with the theoretical
motivation and recall hypothesis 1 from Theorem 3.2, which reads:

∃α such that E[P (qhl
) − P (q)] ≤ chα

l .

What we have obtained at the end of section 4 is instead a bound of the quantity E[∥qh − q]∥2
V ]

(Corollary 4.1). Hence, depending on the regularity assumptions of P (especially, Lipschitz or
Hölder continuity), one can directly guarantee hypothesis 1 and determine the parameter α from
the a priori bound obtained in section 4.
On the other hand, hypotheses 2 and 3 of Theorem 3.2 can be guaranteed only by analysing the
properties of the multilevel generation strategy. Therefore, also for this reason, we believe it is
useful to present two of these strategies in sections 5.2 and 5.3.
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As already mentioned, the a posteriori bound on the single level (partially but not fully achieved
in section 4.4) is useful to perform grid adaptivity. This technique allows us to compute more
accurate solutions through a smart refinement of the mesh. Error indicators (as in Theorem 4.3),
are each one associated to one element. Therefore, high error indicators represent elements that
are preferable to refine. Mesh adaptivity is a popular method to improve solutions without the
burden of a full refined mesh. On the other hand, it can be useful also for the improvement of
multilevel schemes. In many different contests, it is common that the error convergence does
not follow a clear trend when considering few initial levels h0, h1 . . . hn. This is often called pre-
asymptotic regime and it strongly depends on the regularity of the solution and quality of the
mesh. However, an effective mesh adaptivity study could considerably reduce this effect. In our
study, the pre-asymptotic regime makes a MLMC estimation less effective because it does not
fully exploit the improvements from the initial refinements. So, an incisive grid adaptivity study
on the single levels would permit the multilevel estimation to fully exploit its potential.

5.2 The optimized mixed-mass multi level generation method
The first strategy we aim to present is the multilevel extension of the algorithm already described
in section 4.5 and originally introduced in [12].
Let Tl be the triangulation for a certain index l, i.e. the level. We therefore aim to generate the
correlated Zl

M ∼ N (0, M l) and Zl−1
M ∼ N (0, M l−1) where M l is the mass matrix on Tl. First of

all, one needs to construct the supermesh of the two consecutive levels Tl,l−1, i.e. a mesh that
contains both Tl and Tl−1 (read [12] for more details and see the libsupermesh1 library for the
implementation). Clearly, this construction is not needed if Tl ⊃ Tl−1. Then, one can define the
local mass matrices as (

M l
e

)
ij

:=
∫

e
φl

iφ
l
j dx, ∀e ∈ Tl,l−1,(

M l1
e

)
ij

:=
∫

e
φl−1

i φl−1
j dx, ∀e ∈ Tl,l−1,

as well as the local mixed-mass matrix:(
M l,l−1

e

)
ij

:=
∫

e
φl

iφ
l−1
j dx, ∀e ∈ Tl,l−1,

where φl
i indicates as usual the i-th basis function of Tl. One can also define the global mixed-

mass matrix that is equivalent to:

M l,l−1 =
(
Ll
)T

diage(M l,l−1
e )Ll−1,

where the above terms are defined as in section 4.5 but only specific for a certain level l.
We can finally present the full scheme in Algorithm 3. Here, Nl,l−1 is the total number of degrees
in Tl,l−1 and me,l is the local number of degrees of freedom in Tl.
To conclude, we refer again to [12] to see some results from this generation strategy.

1https://bitbucket.org/libsupermesh/
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Algorithm 3 Mixed-mass multilevel generation method ([12])
Compute M l,l−1

e ∀e ∈ Tl,l−1
Compute He such that HeH

T
e = M l

e ∀e ∈ Tl,l−1 (Cholesky factorization)
Compute Ll, Ll−1 as local-to-global maps
Generate Ze ∼ N (0, I) (of size me,l) ∀e ∈ Tl,l−1
Compute Zl

M,e = HeZe

Compute Zl−1
M,e =

(
M l,l−1

)T
H−T

e Ze

Compute Zl
M = ∑Nl,l−1

e=1

(
Ll

e

)T
Zl

M,e and Zl−1
M = ∑Nl,l−1

e=1

(
Ll−1

e

)T
Zl−1

M,e

Return Zl
M and Zl−1

M

5.3 The Gaussian conditional correction generation method
In this section, we instead present a conditional method we recently developed to generate, as
in section 5.2, correlated realizations of Zl

M and Zl−1
M .

Let us start by noticing that, if Tl−1 ⊂ Tl and the finite element spaces satisfy some basic
properties (our definition in section 3.2 is certainly suitable), then:

∃S ∈ RNl−1×Nl such that φl−1
i =

Nl∑
j=1

Sijφ
l
j, ∀i = 1, . . . , Nl−1

Hence, we might compute the normal realization on the coarse mesh from the exact same white
noise realized on the fine mesh:

(
Z̃l−1

M

)
i

:=< Ẇ , φl−1
i >=

Nl∑
j=1

Sij < Ẇ , φj
j >=:

Nl∑
j=1

Sij

(
Zl

M

)
j
. (18)

One can now check that Zl−1
M follows the correct distribution:

Zl
M ∼ N (0, Ml) ⇒ Z̃l−1

M ∼ N (0, SMlS
T ) d= N (0, Ml−1).

Algorithm 4 Generation from conditional Gaussian distributions (finer to coarser)
Compute S ∈ RNl−1×Nl

Generate Zl
M ∼ N (0, Ml)

Compute Zl−1
M = SZl

M

Return Zl−1
M

We aim now to achieve a similar algorithm in the inverse way, i.e. returning Zl
M from Zl−1

M . The
motivation for this choice will be explained at the end of this section.
The starting point is a classical algorithm for the generation of Gaussian vectors from conditional
distributions (see for instance [28]). Namely, consider X ∼ N (0, Σ) as a n-dimensional Gaussian
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vector and the following splitting:

X =



Y1
...

Yk

Z1
...

Zn−k


∼ N

(
0,

[
ΣY ΣY Z

ΣZY ΣZ

])
.

Therefore, ΣY ∈ Rk×k,ΣY ∈ R(n−k)×(n−k) and ΣY Z = ΣT
ZY ∈ Rn×(n−k). The purpose of the

following algorithm is the conditional generation of Y when Z is already known.

Algorithm 5 Generation from conditional Gaussian distributions
Generate Z ∼ N (0, ΣZ)
Generate X = [YT , ZT ]T ∼ N (0, Σ)
Compute Y = Y + ΣY ZΣ−1

Z (Z − Z)
Return Y

One can indeed prove that Y has the correct distribution.
We aim now to follow this general idea to develop an algorithm that returns Zl

M ∼ N (0, Ml)
which is also correlated to the input Zl−1

M . Exploiting the theory of Kalman filters (see [31] for a
general description), one can derive the following equation:

Zl
M = Z̃l

M + MlS
T M−1

l−1

(
Zl−1

M − SZ̃l
M

)
, (19)

where Z̃l
M ∼ N (0, Ml) is independent from Zl−1

M . The following proposition guarantees the
correctness of equation (19).

Proposition 5.1. Let Zl−1
M ∼ N (0, Ml−1) be as usual the application of the white noise on a

finite element space of level l − 1 and let Z̃l
M ∼ N (0, Ml) be independent from Zl−1

M . Hence, Zl
M

from (19) is distributed as N (0, Ml). Moreover, Zl−1
M and Zl

M are correlated as in Algorithm 4,
i.e. as they were generated from the same white noise.

Proof. One can easily check that Zl
M is a zero-mean Gaussian vector. In addition, thanks to the

hypotheses on the distributions and independence of Zl−1
M and Z̃l

M , we have that:

Cov[Zl
M , Zl−1

M ] = MlS
T M−1

l−1Cov[Zl−1
M , Zl−1

M ] = MlS
T M−1

l−1Ml−1 = MlS
T = SMl,

where the last equality exploits the symmetries of the mass and covariance matrices. Now, notice
that SMl is the same correlation matrix as in Algorithm 4.
We only miss the computation of the covariance matrix of Zl

M . Exploiting again equation (19)
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and independence of the distributions, we have that:

Cov[Zl
M , Zl

M ] = Cov
[(

Z̃l
M + MlS

T M−1
l−1

(
Zl−1

M − SZ̃l
M

))
,
(
Z̃l

M + MlS
T M−1

l−1

(
Zl−1

M − SZ̃l
M

))]
= Cov[Z̃l

M , Z̃l
M ] − Cov[Z̃l

M , MlS
T M−1

l−1SZ̃l
M ]+

+ Cov[MlS
T M−1

l−1Zl−1
M , MlS

T M−1
l−1Zl−1

M ] − Cov[MlS
T M−1

l−1SZ̃l
M , Z̃l

M ]+
+ Cov[MlS

T M−1
l−1SZ̃l

M , MlS
T M−1

l−1SZ̃l
M ]

= Ml − MlS
T M−1

l−1SMl + MlS
T M−1

l−1Ml−1M
−1
l−1SMl − MlS

T M−1
l−1SMl+

+ MlS
T M−1

l−1SMlS
T M−1

l−1SMl

Since Ml−1 = SMlS
T , one can show that M−1

l = ST M−1
l−1S. Using this information, we obtain:

Cov[Zl
M , Zl

M ] = Ml − MlM
−1
l Ml + MlM

−1
l Ml − MlM

−1
l Ml + MlM

−1
l MlM

−1
l Ml = Ml

as expected.

Finally, we can write explicitly the algorithm for the conditional generation from the coarser
mesh to the finer mesh.

Algorithm 6 Generation from conditional Gaussian distributions (coarser to finer)
Compute S ∈ RNl−1×Nl

Generate Zl−1
M ∼ N (0, Ml−1)

Generate Z̃l
M ∼ N (0, Ml)

Compute Zl
M = Z̃l

M + MlS
T M−1

l−1

(
Zl−1

M − SZ̃l
M

)
Return Zl

M

Algorithm 6 is certainly more computationally expensive that Algorithm 4 because of the multiple
products and the computation of an inverse matrix. However, this approach could lead to a
wise grid adaptivity strategy. Indeed, with the information obtained from the resolution of the
problem at level l − 1 and the pre-computed Zl

M with (19), one could develop an a posteriori
formulation with error indicators for the level l. This strategy avoids the burden to solve the
problem at the level l before having performed grid-adaptivity on its mesh. In addition, it permits
to execute grid-adaptivity on multiple levels following this sequential down-top procedure. Then,
the sequential grid-adaptivity application on multiple levels 0, . . . l provides a set of optimal
meshes where to perform the best MLMC estimation.
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6 Some numerical results
In this section, we present some numerical results about the single level algorithms introduced
in section 4.5. Codes are implemented using the Fenics2 library for Python ([24]). In addition,
we fixed the following parameters: dimension d = 2, finite element spaces with polynomials of
degree p = 1, k = 1, η = 1, λ = 1. The other parameters ν, κ, σ can be directly obtained from
the previous ones. An important note is that k = 1 and therefore we implemented a standard
finite element method for (5b).

6.1 Accuracy of the mixed-mass white noise simulation
We start by observing a single realization of the Matérn field from equation (5b). Defining a
domain G as a centred circle of radius 5 and h = 0.5, we generated realizations from both the
algorithms that are shown in Figure 1.

(a) Algorithm 1 (b) Algorithm 2

Figure 1: Realizations of the Matérn field solving equation (5b) with FEM and two different
algorithms for the white noise generation

At a first glance, the two solutions seem to share the same spatial distribution.
We aim now to achieve more concrete results that guarantee the correct generation of the Matérn
field. To perform this analysis, we used algorithm 2 and FEM applied to equation (5b) to
generate 2 · 104 realizations of the Matérn field. Finally, from these realizations we estimated the
covariance function measuring the correlation between randomly picked points at 11 different
distances. Therefore, a standard Monte Carlo method applied to 105 correlation measurements
can return the estimation of the covariance function at every fixed distance {ri}i=1,...,11 > 0. The
result is shown in Figure 2.

2https://fenicsproject.org/
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Figure 2: Theoretical Matérn covariance function and experimental estimation from the set of
2 · 104 realizations using algorithm 2.

The plot clearly guarantees the correct generation of the stochastic field. Also algorithm 1 gives
similar results.

Figure 3: Single realization of the diffusion solution uh from (5).

Now that we have confirmed the correctness of the generation algorithms and the Whittle model,
we plot one realization of the final solution uh of equation (5a) . We set D = [−0.5, 0.5]2 and
G = [−1.5, 1.5]2 (with this setting, the distance between the domains is in fact equal to λ, cfr.
Remark 3.3) and f(x) = 1. The contour plot is shown in Figure 3 where we clearly recognize
the diffusive regularization effect.
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6.2 Efficiency of the mixed-mass white noise simulation
A second experimental analysis is related to the efficiency of algorithm 2 with respect to the
standard one (algorithm 1). We recall that algorithm 1 has a cost of O(N3

h) while algorithm
2 presents a cost of O(m3

eNh) where me is the number of degrees of freedom for each element.
Hence, in our case with p = 1, me = 3. A study has then been performed computing the time (in
seconds) to accomplish the Cholesky factorization with different grid levels. Results are shown
in Figure 4a.

(a) Cholesky factorization time (b) HZ product time

Figure 4: Experimental computational times for the two algorithms.

At a first glance, the optimized algorithm from [12] is slower than the original one. However,
a more careful analysis reveals that the order is constant and equal to O(h−2) = O(Nh) while
the order of algorithm 1 is higher. Therefore, we expect algorithm 2 to be faster for smaller h.
In addition, the initial slowness is due to the fact that algorithm 2 needs some explicit loops to
assembly the L and diag(Me) matrices while algorithm 1 only exploits the optimized Cholesky
factorization function3 from Scipy ([29]). Hence, the initial gap is only due to the implementation
in the Python4 environment and should not be present with non interpreted languages.
In our study, we also noticed that algorithm 2 is even more performant when the number of
realizations is high. This is explained by Figure 4b that reports the average time to accomplish
the HZ product for different grid levels. Since the product time is much smaller in algorithm 2,
the realization of many samples takes much less time.
The presumable reason of this fact is related to the different matrix sparsity. First of all, we show
in Figure 5 the sparsity patterns of the two different Cholesky matrices for a certain grid level.
We recall that the Cholesky matrix from algorithm 2 is indeed rectangular, more precisely of
size (Nh, nme). Despite the H matrix obtained from algorithm 1 is smaller, the diagonal is more
densely populated by non-zero elements and contains in total more than 4 times the number
of non-zeros elements of the matrix obtained from algorithm 2. Therefore, this aspect shows
another benefit of the algorithm proposed by [12] that was not originally noticed.

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.linalg.cholesky.html
4Python Software Foundation. Python Language Reference, version 3.9. Available at http://www.python.org
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(a) Algorithm 1: 96912 non-zeros (b) Algorithm 2: 21180 non-zeros

Figure 5: Sparsity patterns of the Cholesky factorization matrices from the two algorithms
(Nh = 1860). The matrix from algorithm 2 is bigger but more sparse.

7 Conclusion
In this work we have continued the analysis on an important family of models that deal with
stochastic spatial diffusivity coefficients. The analysis of these problems is again motivated by
several applications in different scientific contests such as geology, meteorology and biology.
More precisely, we have developed further and important results on diffusion problems with log-
normal Matérn diffusivity coefficients. From our single level analysis, we managed to achieve
explicit bounds for the discretization error when FEM is applied twice on the two different but
coupled problems. In particular, we managed to sum up all the contributions to provide the
bound to the generalized MSE of the diffusion solution. On the other hand, results hold in the
specific case where d = p = 1 because the theory concerning these numerical methods is still very
recent and, for now, we do not have access to more general results. We have discussed that this
bound can be used to guarantee single level estimations precisions and it also brings important
information when one deals with multilevel estimations.
We have also presented a short study on the a posteriori bounds, error indicators and grid
adaptivity. We provided some but incomplete results because the definition of white noise is
very challenging in the formulation of such bounds. We again recommend future research to
proceed in this analysis because of the possible implications of a full a posteriori bound for
the formulation of grid adaptivity techniques. These methods would consistently improve the
efficiency of a multilevel estimation approach.
To conclude this work, we presented some sampling techniques to generate Gaussian vectors
for single and multi-level realizations. In particular, except for the first basic technique, these
methods are specific for the discretized realizations of the white noise. Hence, they represent a
necessary tool to achieve solutions from the problem discussed in this work. So, the application
of one of such methods together with the presented finite element schemes can indeed provide
explicit solutions as shown in the section regarding the numerical results. Here, we validated the
correctness of the Whittle model and the generation algorithm proposed by [12]. In addition, we
confirmed the optimal cost of such a method and we also showed another important advantage
related to the sparsity of the factorization matrices.
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8 Appendix
Exponential symmetric property of the Matérn field

Proposition 8.1. Let (Ω, F ,P) be a probability space and u : Rd × Ω → R be a zero-mean Gaus-
sian stochastic field with a radially symmetric covariance function (i.e. C(x, y) = C(−x, −y) for
all x, y ∈ Rd) and B ⊂ Rd. Then:

E
[
e− minx∈B u(x,ω)

]
= E

[
emaxx∈B u(x,ω)

]
⪇ E

[
e∥u(·,ω)∥L∞(B)

]
.

Proof. We use "∼" to refer to equality in distribution. First of all, it is easy to check that a
Gaussian field with zero mean and radially symmetric covariance function is such that u ∼ −u.
It trivially implies that:

max
x∈B

u(x) ∼ max
x∈B

−u(x) = − min
x∈B

u(x). (20)

Now define dγmin and dγmax as the probability measures associated to the distribution of the
random variables minx∈B u(x) and maxx∈B u(x). Then:

E
[
e− minx∈B u(x,ω)

]
=
∫
R

e−ydγmin(y) (Change of variables)=

=
∫
R

etdγmin(−t) (20)=

=
∫
R

etdγmax(t)

= E
[
emaxx∈B u(x,ω)

]
.

To prove the strict inequality, recall that Gaussian fields have continuous trajectories and then:

∥u(·, ω)∥L∞(B) = max
x∈B

|u(x, ω)| = max {− min
x∈B

u(x, ω), max
x∈B

u(x, ω)}.

Finally, we have that ∥u(·, ω)∥L∞(B) ≥ maxx∈B u(x, ω). Due to the monotonicity of the expo-
nential function and integral operator, we have that:

E
[
e∥u(·,ω)∥L∞(B)

]
≥ E

[
emaxx∈B u(x,ω)

]

On the other hand, since − minx∈B u(x, ω) and maxx∈B u(x, ω) have the same distribution,

∃A ∈ F s.t. P(A) > 0 and − min
x∈B

u(x, ω) > max
x∈B

u(x, ω) ∀ω ∈ A

⇒ ∥u(·, ω)∥L∞(B) > max
x∈B

u(x, ω) ∀ω ∈ A

⇒ e∥u(·,ω)∥L∞(B) > emaxx∈B u(x,ω) ∀ω ∈ A

⇒ E
[
e∥u(·,ω)∥L∞(B)

]
⪈ E

[
emaxx∈B u(x,ω)

]
.
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