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Abstract—In this first part of the project, we analyse a
possible denoising model aiming to restore images just by
looking at corrupted examples, hence the name Noise2Noise.
The based network architecture adopted is a U-Net, in which
skip connections between the contracting and expansive paths
are used.

I. INTRODUCTION

In many applications such as image denoising, image
compression, and, in some cases, even image data gen-
eration, there is the necessity to explicitly model a high-
dimensional signal. To this end, the use of an autoencoder
allows a neural network to learn an efficient representation
of unlabeled data by training the network to ignore signal
“noise”. In the case of image denoising, the main idea is
therefore to capture a small number of degrees of freedom
that represent the physical context, and from these perform
an efficient reconstruction. The auto-encoder therefore has
two main building blocks. The first is an encoder, whose
objective is to learn a lower-dimensional representation (en-
coding) for a higher-dimensional data. This is typically used
for dimensionality reduction, and is achieved by training
the network to capture the most important parts of the
input image. The second is a decoder, whose objective is
instead to reconstruct the image from its lower-dimensional
representation.
The idea of the auto-encoder underlies the structure of the
U-Net. This structure introduces skip connections between
encoding and decoding layers, concatenating the states. This
allows the U-Nets to use fine-grained details learned in the
encoder part to reconstruct an image in the decoder part.
Although the structure of the U-Net is mainly used for
image segmentation tasks, in this paper we would like to
show how the same structure can be adapted for an image
denoising task, as already shown in [5]. As also stated in
this paper, most image denoising models are trained using
large numbers of pairs (x̂i, yi) of noisy inputs x̂i and clean
reference images yi, but here the aim is instead to show
how satisfactory results can be obtained even without clean
samples, if the noise is additive and unbiased.

II. DATASET AND DATA AUGMENTATION

A. First Analysis of the Dataset

The dataset consists of 50’000 examples for the training
set and 1000 examples for the test one. Each example
is represented by a noisy pair of RGB images that are
downsampled and pixelated. All images are 32 × 32 pixels
in size. The networks proposed have the goal to reduce the
effects of downsampling on unseen images.

In Figure 1 we can observe two examples from the test set
that we will reuse later in order to visually observe the results
of our model.

Fig. 1: Noisy starting image (left) and target image (right)

B. Data Augmentation

A data augmentation technique is used to extend the
dataset by adding transformed copies of already existing
images. In doing so, we can increase the generalizability
and robustness of our model, avoiding overfitting as well. In
particular, we decided to add a horizontally and a vertically
flipped version to our dataset. The motivation for this choice
lies in the fact that our model must be able to reconstruct
the main features of the image regardless of its possible
orientation.
Other transformations, both geometric and colour-based, can
be performed on the images, but in most cases they do not
bring any real improvement other than a deterioration in
performance when colours are changed.

III. MODELS AND METHODS

A. U-Net Architecture

In the original structure of the U-Net [6], the input and
output images have different sizes. To be able to evaluate
denoising quality with the same size, we reworked the model
by changing the parameters of the convolution function.
As mentioned earlier, the U-Net network can be divided
into two parts. The first is the contracting path which uses
a typical CNN architecture. Each block in the contracting
path consists of two successive 3 × 3 convolutions with



padding followed by a Leaky ReLU activation unit and
a downsampling layer. However, despite the fact that the
downsampling layer is typically implemented through a
max-pooling operation, we decided to replace this layer with
a convolution with a larger stride. Indeed, max-pooling (or
any kind of pooling) is a fixed operation and replacing it with
a strided convolution can also be seen as learning the pooling
operation, which increases the model’s expressiveness ability
[8]. This structure is repeated several times. The main
characteristic of U-Net comes in the second part, called the
expansive path, in which each stage upsamples the feature
map using 3×3 transposed convolution with a larger stride.
Then, the feature map from the corresponding layer in the
contracting path is concatenated onto the upsampled feature
map. This is followed by two successive 3× 3 convolutions
with padding and a Leaky ReLU activation. At the final
stage, an additional sequence of convolutions 3×3 is applied
to reduce the feature map to the required number of channels
and produce the denoised image. The overall result is a
network with a U-shape and, more importantly, it propagates
contextual information along the network, which allows it
to properly reconstruct the context. Figure 4 illustrates the
overall U-net architecture.

B. Residual U-Net Architecture

Along with the U-Net presented above, we also decided to
implement a different structure of our network, combining
the benefits of the U-Net structure with that of a Res-Net
[2]. Instead of directly predicting the denoised image, the
model predicts the residual noise of the corrupted image.
Such a structure also makes it possible to use a network
with many more layers without running into the vanishing
gradient problem. The resulting final structure is called
Residual U-Net, and although this architecture is also
mainly used for image segmentation [9], we decided to
adapt it for our denoising task.

The structure of the network is similar to that described
for the U-Net, with the main differences being that each
block is implemented as a residual block. Since within the
residual block the input must be added to the output of
the block, if the two quantities have discordant channel
sizes, a 1 × 1 convolution is adopted to scale the number
of input channels. Furthermore, it has been proven in
the literature that Batch Normalization makes the training
process smoother. However, it requires a sufficiently large
batch size, and our choice of batch_size = 30 may be
too restrictive. For this reason, we also tried to make use
of Group Normalization which, unlike batch normalization,
does not require a very large number of batches, as it
divides the channels into groups and normalizes the features
within each group.

After experimenting without normalization, with batch
normalization and with group normalization, we observed
that the latter yielded much better results and therefore

decided to adopt it for our final model. Figure 2 illustrates
the overall Residual U-Net architecture.

Fig. 2: Residual U-Net Architecture

C. Weight Initialization
In order to prevent layer activation outputs from explod-

ing or vanishing gradients during training, an appropriate
initialization of the weights is necessary and allows to
achieve better performance. Among the most widely used are
the Xavier normalization and He-et-al normalization when
dealing with convolutional layers [3]. We experimented with
both inizializations for our networks and the former seems
to lead to slightly better performances than the latter. We
therefore sticked to this one in both models’ implementa-
tions.

IV. RESULTS

In this section we report the results obtained with our
best model given by the U-Net architecture, together with
the final performance of the Residual U-Net. The model’s
performance is calculated through the PSNR between our
prediction (denoised image I) and the target image T , given
by:

PSNR := 20 ∗ log10

(
MAX{I}√
MSE(I,T)

)
where MAX{I} is the maximum possible pixel value of

the image and MSE(I,T) is the mean square error between
the images:

MSE(I,T) :=
1

MN

M−1∑
i

N−1∑
j

||I(i, j)− T (i, j)||2



Figure 3 illustrates the trend of the training loss and the
PSNR on the test set during training, using 30 epochs.

Fig. 3: Evolution of the loss (left) and PSNR (right)

The PSNR obtained on the test set with the best models
are summarized in the following table.

Network Architecture PSNR

U-Net 25.811
Residual U-Net 25.803

Fig. 4: U-Net Architecture

Finally, we report in Figure 5 the results of our best model
on the two pairs of test images previously presented.

Fig. 5: Noisy input image (left), denoised output image
(center) and target image (right)

V. CONCLUSION

The obtained results confirm that the architecture of a U-
Net can also be adapted for a denoising task. However, using
the network on images with such a small resolution (32×32)
does not allow to fully exploit its potential. The structure of
the network also allows its use on larger images, on which
its effectiveness could be tested.
Finally, several variants have been built on the same basic
architecture and can therefore be subsequently used and
tested within this task [7].

Prova
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Abstract—This second part consists in the explicit implemen-
tation of the main blocks for a simple convolutional network.
In other words, we aim at implementing blocks which could
replace the PyTorch modules and allow to define a standard
network as a sequence of those. While this does not present any
practical utility because of the lower computational performance
with respect to optimized PyTorch modules, this project’s goal
is to clearly comprehend how convolutional networks work and
some basic ideas about their implementation in the most common
libraries.

I. INTRODUCTION

The goal of this project is to explicitly implement a few
modules that are useful for the construction of a simple convo-
lutional neural network. These modules are: Sigmoid, ReLU,
2D Convolutional Layer, Nearest Neighbor Upsampling. In
addition to that, we aim to implement a standard optimizer
(SGD) and a standard loss (MSE) in order to provide a
fully functional Deep Learning pipeline. Finally, to define the
network as a sequence of modules, we will define a class
named Sequential presenting very similar characteristics
with the one provided by PyTorch.

II. GENERAL ASPECTS ABOUT THE DEFINITION AND
CONSTRUCTION OF THE NETWORK

A. Definition of the network

The network we aim to implement is shown in Figure 1:

Fig. 1: Diagram of the network.

Upsampling can be defined as the composition of a
Nearest Neighbor Upsampling and a 2D Convolutional Layer
(respectively the equivalent of UpsamplingNearest2d
and Conv2d in PyTorch).

B. The Module class

Every module has different inner tensors and will define
three main methods:

1) forward(): to perform the forward pass.
2) backward(): to compute the gradient of the loss with

respect to the input of the module, given the gradient
with respect to the output.

3) param(): to return the module parameters and the
gradient of the loss with respect to the same parameters
(it is empty for parameterless modules, e.g ReLU).

In addition, we aim to implement the MSE loss as another
class with the forward() and backward() methods (in
this case, the latter will not accept any input) and the SGD
optimizer with the step() method.

Finally we need a definition of the Sequential class
to wrap the different blocks together and build the network.
Its overridden forward() and backward() methods are
explained in section subsection II-C.

C. Basic functioning of the network

We stress again that every module/block contains various
tensors which keep in memory the latest update of parameters
such as weights, gradients, inputs and outputs. The training is
based on the usual following steps:

1) Forward pass: from the current weights, each block
computes the output from an input tensor. Therefore,
the Sequential class can compute the output of
the network by sequentially applying the forward()
methods from all its building blocks. During this step,
each block/module saves in memory its input and output.

2) Forward pass of the loss: from the output of the net,
the MSE module can compute the error thanks to its
forward() method.

3) Backward pass of the loss: the backward() method
of the MSE module returns the gradient of the loss with
respect to the output of the net.

4) Every block can compute the loss gradient with respect
to its input from the gradient with respect to its output.
Therefore, starting from the gradient returned by the
loss, all the gradients can be recursively computed with
the backward() methods from all the blocks, called

https://pytorch.org/docs/stable/generated/torch.nn.UpsamplingNearest2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html


in reverse order. This is indeed the definition of the
overridden backward() method in Sequential.

5) Optimization step: from the gradients with respects to
the states, we can compute the gradients with respect to
the weights/parameters through the param() methods
of each module. Having the current values and gradients
of all the weights and biases, the SGD class can perform
the optimization step via its step() method.

III. OPERATING DEFINITIONS OF THE MODULES

In this section, we present how Conv2d and Upsampling
explicitly perform their forward operation. The remaining
blocks follow instead the standard definitions. Before proceed-
ing, we explicit the following nomenclature:

• I and O are the input and output tensors of a generic
layer.

• W and B are the weight and bias tensors of a convolu-
tional layer.

• L indicates the loss evaluated in a current state.
• B,C,NX , NY are the batch size, the channels number

and the x-y lengths of the image at a generic layer.

A. Nearest Neighbor Upsampling

The goal of this module is to increase the tensor’s spatial
size (based on a scale_factor parameter) by filling it
with repeated values of the original tensor. In particular, let us
assume that the original shape of the tensor is (B,C,Nx, Ny).
If scale_factor = k, the output tensor’s shape should be
(B,C, kNx, kNy). The Nearest Neighbor Upsampling fills up
the newly added k×k squares with the corresponding original
values in the input tensor. We refer below a 2D example,
inspired from the PyTorch documentation page:

[
1 2
3 4

]
k=2
==⇒


1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

 (1)

B. Conv2d as a linear layer

One can prove that convolution is in fact a linear operation.
However, we a priori do not have access tp suitable tensors for
the linear products. Rather, they need a specific construction.
We claim that there exist reshaped versions of the previously
mentioned tensors (called W̃ , B̃, Õ) such that:

Õ = W̃ ⊗ U + B̃ (2)

which, in components, it corresponds to:

Õp,q,r =
∑
m

W̃q,mUp,m,r + B̃0,q,0 (3)

where U is the unfolded version of I (see PyTorch’s
unfold() method). Therefore, the following forward and
backward operations for the Conv2d block will be based on
the equivalent linear operation in Equation 2.

IV. COMPUTATION OF THE GRADIENTS

A. MSE loss
The definition of the MSE loss for a CNN is:

MSE(T,O) :=

1

B · C ·NX ·NY
·

∑
B,C,NX ,NY

(TB,C,NX ,NY
−OB,C,NX ,NY

)
2

where T and O are the target and output tensors. Therefore,
the gradient can be easily computed as:

∂L
∂O

=

2

B · C ·NX ·NY
·

∑
B,C,NX ,NY

(TB,C,NX ,NY
−OB,C,NX ,NY

)

B. Sigmoid
Since the forward operation is by definition O = σ(I)

(component-wise), where:

σ(x) :=
1

1 + e−x

one can easily compute the gradient with respect to the input
with:

∂L
∂I

=
∂L
∂O

⊙ σ′(I)

where ⊙ indicates the Hadamard product and the derivative
of the sigmoid can be directly computed with:

σ′(x) = σ(x)(1− σ(x))

C. ReLU
By definition, the layer forward operation is O = ReLU(I),

where:

ReLU(x) :=

{
x if x > 0

0 if x ≤ 0

Hence, as before, the gradient with respect to the input can be
computed as:

∂L
∂I

=
∂L
∂O

⊙H(I)

where, indeed, the Heavyside function H coincides with the
ReLU subderivative.

D. Nearest neighbor upsampling
The general idea of the forward operation was already

presented in section III. To compute the backward pass, we
instead need to sum the derivatives in each k × k square fol-
lowing intuitively the concept of weight-sharing. This intuition
can also be mathematically demonstrated by the chain rule:

∂L
∂Ii,j

=
∑
p,q

∂L
∂Op,q

∂Op,q

∂Ii,j

However, following Equation 1, ∂Op,q

∂Ii,j
can only have value 1

when (p, q) are in the (i, j) k-square (=: Mk
i,j) and 0 otherwise.

Therefore:
∂L
∂Ii,j

=
∑

p,q∈Mk
i,j

∂L
∂Op,q

as expected.

https://pytorch.org/docs/stable/generated/torch.nn.UpsamplingNearest2d.html
https://pytorch.org/docs/stable/generated/torch.nn.Unfold.html#torch.nn.Unfold


E. Conv2d - gradient of states

Gradients with respects to the input I can be computed
component-wise from Equation 3, which implies:

∂L
∂Ui,j,k

=
∑
p,q,r

∂L
∂Õp,q,r

∂Õp,q,r

∂Ui,j,k

(3)
=

∑
p,q,r

∂L
∂Õp,q,r

W̃q,jδp,iδr,k =
∑
q

∂L
∂Õi,q,k

W̃q,j

(4)

This component-wise operation can be computed with a direct
tensor product, being careful to transpose some components.
Moreover, notice that ∂L/∂Õ can be easily obtained by
reshaping ∂L/∂O. The last missing step is the computation
of the gradient, not with respect to the unfolded input but to
the very input instead. The unfold() operation creates a
new tensor filled with the same original values but repeated
multiple times. Therefore, to compute the last step, we once
again need a weigh-sharing operation as in subsection IV-D.
Fortunately, PyTorch provides a method called fold(),
which consists in the inverse of the unfold() operation,
with the additional multiplication for the repetition times.
Therefore, we can directly go from ∂L/∂U to ∂L/∂I using
fold(). Schematically:

W,
∂L
∂O

reshape→ W̃ ,
∂L
∂Õ

(4)→ ∂L
∂U

fold→ ∂L
∂I

F. Conv2d - gradient of weights and biases

With similar calculations, we get:

∂L
∂W̃i,j

=
∑
p,q,r

∂L
∂Õp,q,r

∂Õp,q,r

∂W̃i,j

(3)
=

∑
p,q,r

∂L
∂Õp,q,r

Up,j,rδq,i =
∑
p,r

∂L
∂Õp,i,r

Up,j,r

(5)

which can be implemented with a standard tensor product if
tensors are before properly translated and reshaped. Then,

∂L
∂Bi

=
∂L

∂B̃0,i,0

=
∑
p,q,r

∂L
∂Õp,q,r

∂Õp,q,r

∂B̃0,i,0

(3)
=

∑
p,q,r

∂L
∂Õp,q,r

δq,i =
∑
p,r

∂L
∂Õp,i,r

(6)

wihch can be implemented with a sum over the first and third
component. At this point, we show the sequential steps to get
the final gradients:

∂L
∂O

reshape→ ∂L
∂Õ

(5)→ ∂L
∂W̃

reshape→ ∂L
∂W

∂L
∂O

reshape→ ∂L
∂Õ

(5)→ ∂L
∂B

G. SGD

In order to actually update the network parameters from the
gradients, we implement the SGD optimizer in the SGD class.
In particular, this class provides a step() method, whose
role is to loop through the model’s modules and recursively
update their parameters by calling their update_params()
methods. The update rule is the SGD one, namely going in the
opposite direction of the gradient with a tuneable step size:

pt+1 = pt − γ∇pt
L (7)

V. TRAINING, TESTING, SAVING AND LOADING

The Model class is the main interface for using our
modules. It implements the sequential structure represented
in Figure 1, stored in its self.model attribute, and defines
the loss criterion (MSE) and optimizer (SGD). It also provides
a train() method, responsible for running the full training
loop. This method iterates on the input samples by batches,
performs the prediction with model.forward(), computes
the loss and the gradients with the backward() methods,
and updates the parameters with the optimizer.step()
method.

This class also provides support for saving and loading
the model. Through the load_pretrained_model() and
save_pickle_state() methods, the parameters and their
gradients in each modules can be saved in and loaded from a
pickle file bestmodel.pth.

VI. CONCLUSION

In order to assess the correctness of our implementation,
these blocks have been compared to the PyTorch ones,
both individually and sequentially. After careful examination,
we concluded that the implementation was in fact correct,
and attained an almost complete similarity with the library’s
performance. However, we point out that because of com-
putational details, which are unrelated to the mathematics
described in this report, it is very hard to actually get a
fully precise implementation. Some examples are the floating
point precision for digits, or different implementations of the
same mathematical expressions, which have been proven to
change results. In fact, this has been apparent when using
an equivalent definition for the sigmoid function and a strict
inequality instead of an inequality condition for the ReLU.
Regarding the implementation of the CNN in Figure 1 for a
Noise2Noise model, we obtained decent results and a PSNR
of 19.5, by training the model for about two minutes on a
CPU. While the score in the first part of the project is much
higher, we remind that the proposed network as well as its
optimizer are of very low complexity and could be more
finely tuned to get better performances. Moreover, the higher
computational times resulting from the manual implementation
of the blocks instead of modules taken from optimized libraries
prevented us from running large simulations. Despite this,
we confirmed the correctness of the implementations and
mathematical calculations.

https://pytorch.org/docs/stable/generated/torch.nn.Fold.html#torch.nn.Fold
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