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Abstract—This paper addresses the task to replace the complex
and expensive Radiative Transfer simulations with a Machine
Learning approach, in order to study the propagation of radiation
in the cosmic Epoch of Reionisation context. The proposed
solution includes a Fully Connected Neural Network and a
Convolutional Neural Network, the latter being the main focus
of the project. In both of them we have applied a physical-based
preprocessing of data and the performances are then compared
in terms of accuracy.

I. INTRODUCTION AND ASTROPHYSICAL BACKGROUND

In the cosmic Epoch of Reionisation (EoR), the period in the
Universe history of formation of the first galaxies and stars, it
is crucial to study how radiation is propagated by astrophysical
sources such as galaxies, black holes and stars.

An established method to carry this study out is through
Radiative Transfer (RT) simulations, which assign a specific
spectral energy density (SED) to each source, compute the
propagation of radiation and calculate the absorption/emission
coefficient of their surrounding cloud gas.

Although RT is widely employed in many astrophysical do-
mains (such as the study of the radiative feedback of the
primordial galaxies/stars in the early Universe, the Supernova
explosion and metals contamination, the radiative effect on the
morphology of galaxies...) it requires a huge computational
effort.

In fact, we are interested in:

« studying a sufficiently large cosmological structure
« obtaining a simulation with high resolution

The number of operations required to solve the equations
of these simulations grows exponentially with the number
of particles and sources simulated: for example, in the type
of simulations considered for this prgject, the number of
operations required scales as ~ NyN7, where N, N, are
the number of sources and particles, respectively.

Therefore, in RT, people are forced to choose between small
high-resolution simulations (and resolve the physics down to
the interstellar scale) and large but coarse ones (and account
for the sample variance of the large cosmic structures).

This is where a Machine Learning approach can enter the
game: setting up a Neural Network trained with data coming
from a large volume/low resolution RT simulation, we aim at
predicting the radiation behavior on a structure with the same
width, but higher resolution.

A. Physical Quantities

The propagation of radiation is described by ionization: in
the EoR framework, indeed, it is commonly agreed that the
first sources start to independently ionise their surrounding
neutral gas, creating their so-called ionised bubble or HII
regions in a pre-overlap phase ([1]). Continuing to expand,
the sphere of influence of ionising radiation eventually overlap
with nearby companions, such that over time these initially
isolated bubbles form a vast interconnected ionised region that
stretches until ultimately the entire Universe is fully ionised.
The evolution of the ionization fraction of hydrogen z; is reg-
ulated by the following differential equation, and corresponds
to its left-hand side:
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This target quantity is a function of:

e Ngpre, the number of the sources per comoving Mpcﬂ
volume, which corresponds to the first term of the right-
hand side of the equation.

e Nigm, the density of the intergalactic medium (IGM),
given in CGS units. The IGM is the hot, X-ray emitting
gas that permeates the space between galaxies, and in
the equation it is represented by the second term of the
right-hand side.
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Fig. 1. Values of z; (left), nsrc (center) and m;gyy, (right) on a slice of the
3D cube that is the project dataset.

II. DATA PREPROCESSING

Our dataset is the same employed in [2f]; it consists of
300 x 300 x 300 values in the form {(nigm,Nsrc), T;} for
4 different redshifts, i.e. increases in the wavelength of elec-
tromagnetic radiation.

For a more intuitive understanding of this concept, we can
simply link each redshift with a different moment in the
evolution of the Universe.

'In astrophysics, it is common to define distances in parsec: 1 pc = 3.09 x
1013 km



A. Choice of the redshift

First of all, we had to select one redshift to focus on.
By a preliminary analysis of the mean values of the ionization
fraction, we obtained the following results:

10.11 | 8.397 | 7.305 | 6.905
0246 | 0.484 | 0.753 | 0.898

z |
mean x; ||
In order to avoid problems linked to class imbalance, our
choice has been for the redshift z = 8.397, corresponding
to ~ 0.6 Billion Years from the Big Bang.

In this scenario, the division between ionized and not ionized

space is nearly 50% — 50%, so both classes are fairly repre-
sented.

B. Change of Units of Measurement

The units of measurement used to store 7;g,, and n,,. are
not matching: the former is a density in the CGS unit system,
the latter is instead a quantity per comoving mega-parsec.
Therefore, we need to perform a transformation:

[nigm] = 25 = 101 225 = 10" - 3.09° - 10% %5 = 2.95 - 107 %5
From the above equation we got the right quantity to perform
a redefinition of n;gy,:
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Nigm — 295 x 1 X Nigm

C. Normalization

The necessity to normalize the quantities 7,4y, and ng.c
comes from the fact that they have extremely different scale
(even after the change of units) and variance. Note that x; is
in the range [0, 1] as it represents a fraction, and is therefore
not problematic.
For y = njgm, Nsrc, indicating with 11 and o the mean value
and the standard deviation over the whole 300 x 300 x 300
cube, we have:
y—H

o

Ynorm =

Note that, only for 1;4.,, we have performed a typical trans-
formation in astrophysics, passing to the cosmic overdensity:

where ;4 is the mean of n;4,, on the cube.

D. Neighborhoods Generation

The input that the Convolutional Neural Network receives
to compute x; in a given point does not consist of the values
of Nigm and ng.. on the whole 300 x 300 x 300 cube, but on
a smaller cube.

This choice, which turned out to be determinant for computa-
tional effort, is based on an astrophysical principle: there exists
a length value, known as Mean Free Path (MFP), representing
the radius of the volume of influence of each source and inter-
galactic medium.

Therefore, if we want to obtain the x; in a given point, we can
just focus on the features 1. and n;g4y, in its neighborhood.
In our case, the maximum MFP is 57.14 comoving Mpc, and

since the resolution of the RT simulation is 2.381 comoving
Mpc, the hard limit for the radius of influence corresponds to
24 points.

In the first of our attempts, therefore, the neighborhoods were
49 x 49 x 49 cubes, as we had to consider 24 + 1 (the central
one) +24 points in each directionﬂ This size has been changed
in the following attempts, and it will be discussed in

E. Point Sampling

Having chosen to focus on a specific redshift, we have

a total of 300 x 300 x 300 points to choose from. To get
a sustainable computational usage of resources, we chose
to work only with a maximum of 70.000 of them, and we
partitioned them into training set and validation set.
The points were chosen randomly, so that they are widespread
over all the 3D cube, and we checked that they are sufficiently
far from the boundary, so that we could extract a neighborhood
in the CNN case.

III. FuLLY CONNECTED NEURAL NETWORK
A. Structure

Our first attempt is based on a Fully Connected Neural
Network with two dense branches merging into a final dense
branch, as it can be seen from the sketch below.

Each branch has three dense layers, which means that each
node is connected to all the nodes of the previous layer via a
weighted edge; this results in a big number of parameters to
be learned.

We used the Exponential Linear Unit (ELU) as activation
function; it is a variant of the RELU, which avoids and rectifies
the vanishing gradient problem since it is defined as follows:

z z2>0

ELU(z) = {oz(ez o)

z<0

In order to reduce overfitting, and to do a sort of “ensemble
averaging” as well, we included a Dropout Layer with
dropout probability p = 0.2; this means that at each training
step, we retained with probability 1 — p each node.

At first, we included a final sigmoid activation function as
well, but it turned out to be ineffective.

IV. CONVOLUTIONAL NEURAL NETWORK
A. Motivation

As it will be remarked in [V-AT] the strategy based on the
FNN showed a good performance for medium-high values of
x;, but it lacked in predicting the right x; for lower values.
This is due to the fact that some points may have a significant

2For the sake of lightening the computational effort, the neighborhoods are
extracted and stored in a separate script.



x; even if the ng.. and the n;g,, in that point are small.
What determines the ionization, in this case, is the closeness
to points with high n,,.. and/or n;gm,.

This lack for the FNN case is due to the fact that it does
not take into account the position of the points, therefore the
influence of the neighbors is lost. Therefore, we now propose
a solution based on a Convolutional Neural Network.

B. Structure

The architecture proposed consists of two convolutional
branches followed by a fully connected branch (structure
inspired by [3]). The net can be sketched as in but
considering two convolutional layers in the upper part instead
of the fully connected ones.

Each upper branch has the following structure:

e 3 convolutional blocks consisting of a Conv3d layer
followed by a BatchNorm3d layer.
We have chosen the size of the convolutional kernel equal

to 5, the padding equal to 25 (in order to perform valid
padding) and stride equal to 1. The normalization layer
has the effect of normalizing the input of each layer, using
mean and variance of a batch.

o LeakyReLU as activation function, which has the same
benefits of the already discussed ELU.

« A final pooling layer with AvgPool3d; pooling layers pro-
duce downsampling, that is reduction of the spatial size
of the convolved feature. Our choice, average pooling,
returns the average value of the portion of the convolved
feature covered by the kernel, which has size 2.

The outputs from the two branches are then concatenated
along the channel dimension, and the result is flattened;
this is then processed by the final fully connected branch,
including 5 blocks of the form Linear + Activation +
Dropout (p = 0.1) and, when the output size is reduced to
16, 3 final Linear layers.

V. RESULTS

In this section we report the results obtained for the FNN
and the CNN. At first, we tried to use the same number of
training and test points and epochs in order to make a suitable
comparison, but we found out that the FNN results do not
substantially improve with more than 7.000 dataset points.
First of all, we report two significant types of plot for the
performance evaluation of the NN; in the correlation plots
we compare, on the set of validation points, the output of the
net with the true value from the RT simulation. Ideally, we
would like the plot to be stretched on the diagonal, which
corresponds to the case of exact prediction; the other lines
reported are y = x + %38z, and delimit the range in which
we expect that half of the data fall (from the quantiles of the
Standard Normal).

We also report the trend of the training and test loss with
respect to the number of epochs. The model which shows the
best performance is indicated with a small red cross.

In the same plot, on the right, we report the trend of the R?

score.
It is defined as:
Z (Aj - P])z
RR=1-_1
(4; — A)?
j=1

where A; is the ground truth, P; is the predicted value and A
is the mean of the ground truth.

A. Same dataset, different networks

1) Fully Connected Neural Network: from the analysis of
the correlation plot, the area in which the prediction is worse
corresponds to points with low ionisation rate.

Moreover, we found out that the results obtained were better
if we removed the final sigmoid activation function.
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Fig. 2. Correlation plot: FNN with 6.300 training points, 700 validation
points

Fig. 3. Plot of loss trends (left) and R? score: FNN with 6.300 training
points, 700 validation points

2) Convolutional Neural Network: we first made some
unsuccessful attempts with radius of neighborhood equal to 24.
In this case, we were forced to use only 3.000 input data due
to memory limitations, and the results turned out to be critical
(see [Figure 4). We performed trials for decreasing values
of neighborhood size, and we understood that, to prevent
overfitting, increasing the input data amount is more effective
than using a large neighborhood. Moreover, the Mean Free
Path only sets a hard limit after which photons, of a source at
the central pixel, are supposed to be completely depleted.

In reality, photons may stop before, and it actually depends



on the cosmic time. The fact that we got the best result for
a radius of 4 (see could mean also that this is the
sphere of influence of the sources, at this epoch of reionisation.

Fig. 4. Plot of loss trends (left) and R? score (right): CNN with neighbor-
hoods of size 24, 2300 training points, 700 validation points. The excellent
results for the training and the inadequate results for the test clearly suggest
a phenomenon of overfitting.
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Correlation plot: CNN with 69.300 training points, 700 validation
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Fig. 6. Plot of loss trends (left) and R? score (right): CNN with 69.300
training points, 700 validation points.

B. Looking for the best combination

The model providing the best output, considering the R>
score, is the FNN. However, we noticed from the correlation
plots that the CNN performed better on low ionisation points,
and that the expressive power of the CNN could even be
enhanced more by increasing the number of training points.

VI. CONCLUSIONS

Using the largest amount of data possible for our
computational resources (70.000), we succeeded in removing
the overfitting of the initial trials with fewer data (3.000).

At that stage of the project, indeed, we suspected that the
overfitting behaviour observed was probably due to the
limited number of input data points, and the definitely better
results obtained with 70.000 points confirmed our intuition
that the previous models turned out to be tailor-made for our
small sample, and failed in fitting the validation points well.
In the best CNN model, the R? score for the validation set
is close to the training set’s one, and it is ~ 0.7 (ideally,
R? =1 represents the best score achievable).

We think that it could be even increased, since, even in the
case in which we exploit the largest number of data points,
we still use only the ~ 0.26% of the availability.

VII. FURTHER DEVELOPMENTS

Another tool we could exploit to improve the performance
is data augmentation: in our case, a strategy to increase
the number of data available for training could be rotating
each subvolume and this should be preferably done on the fly
before training, without storing additional files.

However, we remark that this would significantly increase
the computational time, and it has not been possible for this
project due to the time limitation.

Another technique that could be adopted is a concatenation
between a CNN and a FNN, as we have seen that the FNN
provides better results and the CNN has the potentiality to
perform even better, but is limited by the computational
effort. The concatenation would exploit together the benefits
of the two models.

This project, after having refined the working CNN model
for a given redshift z, could be the starting point for the
addition of the information provided by different times, that
is, in our case, different z. In this framework, we leave the
door open to the development of a Long short-term memory
(LSTM) Neural Network, which can process not only single
data points, but also entire sequences of data.
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