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Introduction

DUBeat12 (/dAbit/) is a C++ open-source header library that provides high-order discontin-
uous Galerkin methods and applications to models from the cardiac electrophysiology. More
precisely, it is possible to use DUBeat to solve differential problems using either the standard
DGFEM basis or the high-order Dubiner basis (proposed by [8], see Section 1.2), both in 2 or 3
dimensions. The library is developed based on the lifex ([1]) and deal.II ([4]) libraries from
which it collects core structures, algebraic methods and electrophysiology models.
This work originates from the research already performed in [6] about Dubiner methods and
their performance in electrophysiology problems (mainly, the monodomain and bidomain prob-
lems [7], [12]). The original intuition in this work was the great suitability of high-order discon-
tinuous methods such as Dubiner basis method to solve this kind of problems where solutions
are represented by steep and fast waves. It is indeed well-known that standard methods are
prone to not correctly capture the wave propagation unless the grid is very refined (see [16]).
This last option is often not feasible while the increment of the order in high-order methods
seems to return correct and accurate results with lighter computational resources overcoming
this issue. The promising results in [6] lead to the creation of DUBeat.
The main theoretical setting is taken from this work while the main challenges of this project
were the implementation and fine-tuning of a high-performance C++ code, the generalization
to different problems and the extension of the Dubiner basis to three dimensions.
To fully comprehend the tools developed in this library, Section 1 is aimed to present the in-
volved numerical methods under a rigorous but simple mathematical description. The structure
of the code is instead comprehensively shown and discussed in Section 2 while Section 3 is use-
ful for all the information regarding the personal use of the library. To conclude, we make use
of Section 4 to guarantee the correct behaviour of the implemented numerical schemes and to
show the outstanding performance of high-order methods.
To conclude, the authors of the library address the official documentation1 for more information
and to the official open-source repository2 for the user contribution. Use and modification of
the codes are limited under the GNU General Public License.

1 https://matteocalafa.com/DUBeat
2https://github.com/teocala/DUBeat

https://matteocalafa.com/DUBeat
https://github.com/teocala/DUBeat


2

1| The Dubiner high-order

discontinuous Galerkin method

In this section, we aim to present and describe the numerical methods that have been imple-
mented in the codes. In Section 1.1 we start with a general description of the discontinuous
Galerkin methods applied to standard linear elliptic problems. From this background, one can
then proceed to Section 1.2 for the description of the high-order DG methods based on Dubiner
basis. To conclude, the following Section 1.3 is aimed to describe the most relevant disparities
between the DGFEM method and the Dubiner method and how to overcome these challenges.

1.1. A brief presentation of discontinuous Galerkin meth-

ods

A classical and complete description of DG methods can be found in [5], however we now refer to
the derivations and notations from [11]. For our scopes, it is sufficient to present discontinuous
Galerkin methods when applied to a standard Poisson problem with homogeneous Dirichlet
boundary conditions. It reads −∆u = f x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.1)

where D ∈ Rd is a Lipschitz bounded domain and f ∈ L2(Ω). The weak formulation of (1.1) is
known to be

u ∈ H1
0 (Ω) :

∫
Ω

∇u · ∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω). (1.2)

We will call V := H1
0 (Ω) the original analytical space. We define a quasi-uniform triangulation

Th on Ω that is indexed by the mean grid size h > 0. Differently from the continuous FEM
method, we aim to solve (1.2) projected on

Vh := {uh ∈ L2(Ω) : uh|K ∈ Pp(K) ∀K ∈ Th},
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i.e., the discretized space is composed of functions that are discontinuous on the borders between
adjacent elements and are piece-wise polynomials of order at most p ∈ N.
In addition, let us define Fh the set of faces of Th. Hence, the DG formulation adapted to the
problem in (1.2) reads:

Find uh ∈ Vh :∑
K∈Th

∫
K
∇uh · ∇vh −

∑
F∈Fh

∫
F

{{∇huh}} · [[vh]]− θ
∑
F∈Fh

∫
F

[[uh]] · {{∇hvh}}

+
∑
F∈Fh

∫
F

γ[[uh]] · [[vh]] =
∫
Ω

fvh ∀vh ∈ Vh,

(1.3)

where:

• ∇h is the piece-wise gradient (i.e. does not consider the discontinuity),

• u+, u− are used to indicate the evaluations of u on the two sides of one face,

• [[u]] :=

u+n+ + u−n− F is an interior face,

un F is an exterior face,

• {{∇u}} :=

(∇u+ +∇u−)/2 F is an interior face,

∇u F is an exterior face,

• θ ∈ {−1, 0, 1} is the penalty coefficient1,

• γ = O
(

p2

h

)
is a regularity parameter.

In particular, the first two terms of (1.3) come directly from the integration by parts on every
element K and the other two terms are added for stability purposes. At this point, one can
easily derive the DG linear system to solve. Let {φi}Nh

i=1 be a set of Vh basis functions and define
F I

h and FB
h as respectively the set of interior and exterior faces. Therefore, we have that:

(
V − IT − θI + S

)
u = f , (1.4)

where:

• u ∈ RNh is the vector that contains the coefficients of the discretized solution with respect
to the basis functions,

• fi :=
∫
Ω
fφi,

1It defines which DG method is used: Symmetric Interior Penalty method (SIP) for θ = 1, Incomplete
Interior Penalty method (IIP) for θ = 0 and Non Symmetric Interior Penalty method (NIP) for θ = −1. Note
that, for Section 4 the SIP method has been used.
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• Vi,j :=
∫
Ω
∇φi · ∇φj,

• Ii,j :=
∑

F∈FI
h

(
1
2

∫
F
∇hφ

+
i · n+φ+

j − 1
2

∫
F
∇hφ

+
i · n+φ−

j

)
+
∑

F∈FB
h

∫
F
∇hφ

+
i · n+φ+

j ,

• Si,j :=
∑

F∈FI
h

(∫
F
γφ+

i φ
+
j −

∫
F
γφ+

i φ
−
j

)
+
∑

F∈FB
h

∫
F
γφ+

i φ
+
j

It is important to notice that the basis functions have not been specified yet and, therefore,
the previous formulation is valid both for a DGFEM method (i.e., a DG method that employs
piece-wise FE basis functions) and, as we will see, also for the high-order method with Dubiner
basis (presented in Section 1.2).
To conclude this section, we show how the choice for the reference problem in (1.1) can really
generalize to a larger family of problems. First of all, the DG problem applied to (1.1) with
non-homogeneous Dirichlet boundary conditions (u = g on ∂Ω) can be easily generalized as

Find uh ∈ Vh :∑
K∈Th

∫
K
∇uh · ∇vh −

∑
F∈Fh

∫
F

{{∇huh}} · [[vh]]− θ
∑
F∈Fh

∫
F

[[uh]] · {{∇hvh}}

+
∑
F∈Fh

∫
F

γ[[uh]] · [[vh]] =
∫
Ω

fvh − θ
∑

F∈FB
h

∫
F

g∇hvh · n+
∑

F∈FB
h

∫
F

γgvh ∀vh ∈ Vh,

(1.5)

while the DG formulation for (1.1) with non-homogeneous Neumann boundary conditions (∇u ·
n = g on ∂Ω) reads

Find uh ∈ Vh :∑
K∈Th

∫
K
∇uh · ∇vh −

∑
F∈FI

h

∫
F

{{∇huh}} · [[vh]]− θ
∑
F∈FI

h

∫
F

[[uh]] · {{∇hvh}}

+
∑
F∈FI

h

∫
F

γ[[uh]] · [[vh]] =
∫
Ω

fvh +
∑

F∈FB
h

∫
F

gvh ∀vh ∈ Vh.

In addition, we stress the fact that additional zero and first order terms are treated as in
the continuous case. For example, the addition of a forcing term ku in equation (1.1) simply
requires to sum a matrix in the form Mi,j :=

∫
Ω
kφiφj. This is intuitively correct since stability

terms are already added and no further integration by parts is involved. Hence, the above
formulations extend very simply to general linear second order PDEs.

1.2. The Dubiner spectral basis

The Koornwinder-Dubiner basis, or simply Dubiner basis, is a spectral basis that originates
from the works of Koornwinder [10] before and Dubiner [8] later. Instead, the extension to the



1| The Dubiner high-order discontinuous Galerkin method 5

three-dimensional case has been firstly presented in [14].
We provide now the definition and basic properties of such a basis in both the two-dimensional
and three-dimensional settings. In order to achieve this goal, we will refer to the notations from
[14] and [3]. In particular, we adopt the same reference triangle as in [3].

1.2.1. Dubiner basis in two dimensions

Contrarily to the standard spectral basis, the Dubiner basis is defined on simplices rather than
squares. This is possible thanks to a special transformation. Define the 2D reference triangle

K̂ = {(ξ, η) : ξ, η ≥ 0, ξ + η ≤ 1}, (1.6)

and the reference square

Q̂ = {(a, b) : −1 ≤ a ≤ 1, −1 ≤ b ≤ 1}. (1.7)

Then, consider the following transformation from Q̂ to K̂:

ξ =
(1 + a)(1− b)

4
, η =

(1 + b)

2
. (1.8)

Figure 1.1: 2D transformation from the reference square Q̂ to the reference triangle K̂ (courtesy
of Paola F. Antonietti).

Hence, the Dubiner basis functions are constructed as the transformations of suitable functions
initially defined on Q̂. More precisely, these original functions are defined as tensor products of
Jacobi polynomials. Therefore, before proceeding, we give here one of the possible definitions
and the main property of these orthogonal polynomials.
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Definition 1.1 (Jacobi polynomials [15]). The n-th Jacobi polynomial of indices α, β ∈ R is
defined as:

Pα,β
n (x) =

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

[
(1− x)α(1 + z)β(1− z2)n

]
.

We now state the main property of the Jacobi polynomials.

Proposition 1.1 (Orthogonality of Jacobi polynomials [15]). {Pα,β
n }n∈N for α, β > −1 is a set

of L2(−1, 1)-orthogonal functions with respect to the Jacobi weight w(x) = (1 − x)α(1 + x)β,
indeed:∫ 1

−1

(1− x)α(1 + x)βPα,β
n (x)Pα,β

m (x) dx =
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

Γ(n+ α + β + 1)n!
δnm.

We are ready now to define the Dubiner basis on the 2D reference triangle.

Definition 1.2 (2D Dubiner basis [3]). The 2D Dubiner basis function indexed by (i, j) ∈ N2

is defined as:
φi,j(ξ, η) = ci,j(1− η)iP 0,0

i

(
2ξ

1− η
− 1

)
P 2i+1,0
j (2η − 1),

where ci,j =
√

2(2i+ 1)(i+ j + 1).

Figure 1.2: Dubiner basis functions that generate P5(K̂) (courtesy of G. Steiner).

The main advantage of this construction through the transformation in (1.8) is that Dubiner
basis is in fact an orthonormal polynomial basis on simplices.

Proposition 1.2 (Orthonormality of 2D Dubiner basis). {φi,j}i+j≤p is an L2-orthonormal basis
of Pp(K̂), i.e. the space of polynomials of degree at most p ∈ N on the reference triangle K̂.
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Proof. We just need to perform the computation of the scalar product between two basis
functions φi,j, φk,l and prove that it is 1 if and only if i = k and j = l, zero otherwise.∫

K̂

φi,jφk,l =

ci,jck,l

∫
K̂

(1− η)i+kP 0,0
i

(
2ξ

1− η
− 1

)
P 0,0
k

(
2ξ

1− η
− 1

)
P 2i+1,0
j (2η − 1)P 2k+1,0

l (2η − 1).

We aim now to compute this integral on Q̂ instead of K̂. Therefore, we use (1.8) and we
compute the determinant of the Jacobian as:

|J(a, b)| =

∣∣∣∣∣1−b
4

−1+a
4

0 1
2

∣∣∣∣∣ = 1− b

8
.

Hence, the transformation to the square yields

ci,jck,l

∫
Q̂

(
1− b

2

)i+k

P 0,0
i (a)P 0,0

k (a)P 2i+1,0
j (b)P 2k+1,0

l (b)
1− b

8

=
ci,jck,l
2i+k+3

∫ 1

−1

P 0,0
i (a)P 0,0

k (a)

∫ 1

−1

(1− b)i+k+1P 2i+1,0
j (b)P 2k+1,0

l (b).

Thanks to Proposition 1.1, we can compute the left integral and it reads

ci,jck,l
2i+k+3

2

2i+ 1
δi,k

∫ 1

−1

(1− b)i+k+1P 2i+1,0
j (b)P 2k+1,0

l (b)

=
ci,jci,l
22i+3

2

2i+ 1
δi,k

∫ 1

−1

(1− b)2i+1P 2i+1,0
j (b)P 2i+1,0

l (b).

Using again Proposition 1.1, we finally get

ci,jci,l
22i+3

2

2i+ 1
δi,k

22i+2

2j + 2i+ 2
δj,l =

c2i,j
2(2i+ 1)(2i+ 2j + 1)

δi,kδj,l = δi,kδj,l.

1.2.2. Dubiner basis in three dimensions

We now proceed to the extension in three dimensions. In this case, we redefine the reference
domains as:

K̂ = {(ξ, η, ν) : ξ, η, ν ≥ 0, ξ + η + ν ≤ 1},

Q̂ = {(a, b, c) : −1 ≤ a, b, c ≤ 1}
(1.9)
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with K̂ as the reference tetrahedron and Q̂ as the reference cube, also the transformation
becomes:

ξ =
(1 + a)(1− b)(1− c)

8
, η =

(1 + b)(1− c)

4
, ν =

(1 + c)

2
. (1.10)

Definition 1.3 (3D Dubiner basis [14]). The 3D Dubiner basis function indexed by (i, j, k) ∈ N3

is defined as:

φi,j,k(ξ, η, ν) =

ci,j,kP
0,0
i

(
2ξ

1− η − ν
− 1

)
(1− η − ν)i P 2i+1,0

j

(
2η

1− ν
− 1

)
(1− ν)j P 2i+2j+2,0

k (2ν − 1)

where ci,j,k =
√

(2i+ 2j + 2k + 3)(2i+ 2j + 2)(2i+ 1).

Proposition 1.3 (Orthonormality of 3D Dubiner basis). {φi,j,k}i+j+k≤p is an L2-orthonormal
basis of Pp(K̂), i.e. the space of polynomials of degree p ∈ N on the reference tetrahedron K̂.

Proof. We again need to compute the scalar product between two basis functions φi,j,k, φl,m,n

and check that it is 1 if and only if the two sets of indices coincide.
In this case, the determinant of the Jacobian is

|J(a, b, c)| =

∣∣∣∣∣∣∣
(1−b)(1−c)

8
− (1+a)(1−c)

8
− (1+a)(1−b)

8

0 1−c
4

−1+b
4

0 0 1
2

∣∣∣∣∣∣∣ =
(1− b)(1− c)2

64
.

Hence, we can directly compute the integral on Q̂. In addition, transformation (1.10) and
Proposition 1.1 will be again used. So, we have

1

ci,j,kcl,m,n

∫
K̂

φi,j,kφl,m,n

=

∫
Q̂

P 0,0
i (a)P 0,0

l (a)
((1− b)(1− c))i+l

4i+l
P 2i+1
j (b)P 2l+1

m (b)

(
1− c

2

)j+m

P 2i+2j+2,0
k (c)P 2l+2m+2,0

n (c)J

=
2δi,l
2i+ 1

∫ 1

−1

∫ 1

−1

((1− b)(1− c))i+l

4i+l
P 2i+1,0
j (b)P 2l+1,0

m (b)

(
1− c

2

)j+m

P 2i+2j+2,0
k (c)P 2l+2m+2,0

n (c)J
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=
δi,l

2i+ 1

∫ 1

−1

(1− b)2i+1P 2i+1,0
j (b)P 2i+1,0

m (b)

∫ 1

−1

(1− c)2+2i+j+m

25+4i+j+m
P 2i+2j+2,0
k (c)P 2i+2m+2,0

n (c)

=
δi,l

(2i+ 1)(25+4i+j+m)
· 22i+2

2i+ 2j + 2
δj,m

∫ 1

−1

(1− c)2+2i+j+mP 2i+2j+2,0
k (c)P 2i+2m+2,0

n (c)

=
δi,lδj,m

(2i+ 1)(23+2i+2j)(2i+ 2j + 2)

∫ 1

−1

(1− c)2+2i+2jP 2i+2j+2,0
k (c)P 2i+2j+2,0

n (c)

=
δi,lδj,m

(2i+ 1)(23+2i+2j)(2i+ 2j + 2)
· 22i+2j+3

2i+ 2j + 2k + 3
δk,n

=
1

ci,j,kcl,m,n

δi,lδj,mδk,n.

Remark 1. As stated above, the Dubiner basis and its orthonormality are well-known in
literature for a long time ([8], [14], [3]). However, the current state of the art rarely provides
explicit definitions (especially, in three dimensions) and these few cases are often referred to
different reference tetrahedra and do not lack of oversights. This is the reason why we decided
to propose here explicit definitions and proofs of orthonormality, to finally give a complete
overview in 2 and 3 dimensions and to justify the code that is implemented in the DUBValues

class (see Section 2.2.1).

Remark 2. We refer again to [6] for a motivation for the choice of the Dubiner basis in the
context of cardiac electrophysiology and, so, to the creation of DUBeat.

1.3. From modal to nodal evaluations

The FEM and DGFEM bases have the important property that each basis function is associated
to a spatial point (called indeed DOF point) such that the Fourier coefficient of a numerical
solution with respect to the i-th basis function coincides with the evaluation of the solution
on the i-th DOF point. At this point, it is soon evident that the Dubiner basis satisfies the
outstanding ortho-normality property abandoning, however, this point-wise/nodal property.
In this small section, we resume the simple strategies to pass from a nodal/DGFEM represen-
tation to a modal/Dubiner representation and how to discretize analytical functions in the two
standards. Such steps are necessary when working with modal basis such as Dubiner basis. For
instance, the discretization of initial solutions in time-dependent problems requires a strategy
to discretize analytical functions as modal evaluations and the generation of contour plots at
the end of the numerical resolution requires, instead, a method to convert a solution vector
from the modal to the nodal evaluation.
We now recall what we have already been presented in [6] and we start from the transforma-



1| The Dubiner high-order discontinuous Galerkin method 10

tion of a discretized solution uh written as a Dubiner coefficient vector into nodal coefficients.
Because of the point-wise property discussed above, to obtain the i-th DGFEM coefficient we
just need to evaluate the discretized solution in the DOF point xi. Keeping in mind the modal
meaning of the solution vector components, the nodal evaluation writes

ûi = uh(xi) =

Ñh∑
j=1

ũjφj(xi), i = 1, . . . N̂h,

where Ñh, N̂h are respectively the Dubiner and DGFEM space dimensions, ũj, ûi the j-th Du-
biner coefficient and the i-th DGFEM coefficient and φj the j-th Dubiner basis function.
We now present the general technique to project an analytical function u as a Dubiner function
vector. As stated above, Dubiner basis is not nodal but the ortho-normality property turns
out to be crucial, indeed thanks to this property, proved in Section 1.2, we can state that the
i-th Dubiner coefficient is simply the L2 scalar product between the function and the i-th basis
function. Explicitly:

ũj =

∫
Ω

u(x)φj(x) dx =

∫
Kj

u(x)φj(x) dx j = 1, . . . Ñh, (1.11)

where Ω is the space domain and Kj is the element that contains the j-th Dubiner function.

Remark 3. The procedure in equation (1.11) can be adopted also to convert FEM vectors
into Dubiner vectors. Simply, the u function can be rewritten as linear combination of FEM
coefficients and FEM basis functions.

Remark 4. The previous integrals are obviously implemented with quadrature formulas.
The DUBFEMHandler class contains these operations under the methods: dubiner_to_fem,
fem_to_dubiner, analytical_to_dubiner (see Section 2.2.2).
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2.1. General structure

Dubiner basis classes:
- DUBValues
- DUBFEMHandler

Assembly classes:
- AssembleDG

Geometry classes:
- VolumeHandlerDG
- FaceHandlerDG
- DoFHandlerDG

Models:
- ModelDG
- ModelDG_t
- LaplaceDG
- HeatDG
- MonodomainFHNDG

Error classes:
- ComputeErrorsDG

Quadrature classes:
- QGaussLegendreSimplex

DUBeat is composed by different template classes that can be discerned into two main groups:

• The core classes under the source folder that contain the methods for which the discon-
tinous Galerkin methods can effectively work.

• The model classes under the models folder that correspond to model problems where
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DUBeat can be executed and tested (Section 2.7).

The classes could have to be specialized with one of the following parameters:

• <unsigned int dim> is the space dimension, often associated with the lifex configura-
tion lifex::dim. DUBeat works indeed in both 2 and 3 dimensions.

• <class basis> is instead the choice for the basis functions, the user can indeed easily
switch between

– DUBValues<unsigned int dim> for the Dubiner basis.

– dealii::FE_SimplexDGP<unsigned int dim> for DGFEM basis.

2.2. Dubiner basis classes

DUBValues<unsigned int dim>
DUBValues.hpp

DUBFEMHandler<class basis>
DUB_FEM_handler.hpp

2.2.1. DUBValues

The class DUBValues<unsigned int dim> represents the Dubiner basis functions evaluations
coherently to the definitions in Section 1. The main routines are the evaluations of the basis
functions and their gradients on the reference cell (as defined in equations (1.7), (1.9)).
Namely:

• shape_value which evaluates the equation in the Definition 1.3 in a specific point of the
reference cell,

• shape_grad which evaluates the gradient of the equation in the Definition 1.3 at a specific
point of the reference cell.

Other useful functions are: eval_jacobi_polynomial, which exploits the equation in the Def-
inition 1.1, and fun_coeff_conversion which represents the conversion from the FEM basis
taxonomy (1st basis function, 2nd basis function, . . . ) to the Dubiner basis taxonomy (where
every basis function is indexed by a tuple of indexes (i, j) in 2D and three indexes (i, j, k) in
3D). Although, these functions have only internal scopes to let the basis evaluations possible.
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2.2.2. DUBFEMHandler

The class DUBFEMHandler<class basis> inherits from DUBValues<lifex::dim> from Section
2.2.1 and it provides conversions for solution vectors with respect to the DGFEM basis to
vectors with respect to the Dubiner basis and viceversa, as explained in Section 1.3. The main
functions are:

• analytical_to_dubiner to project an analytical solution as a vector of Dubiner coeffi-
cients, to be used for instance with analytical initial solutions before the system solving
in time-dependent problems.

• dubiner_to_fem to convert Dubiner solution vectors into DGFEM solution vectors, to
be used for instance when creating contour plots at the end of the simulation.

• fem_to_dubiner to do the same in the opposite direction, it might be useful if the initial
solution in a time-dependent problem is not analytical but only a vector of evaluations in
the DOF points.

2.3. Geometry classes

VolumeHandlerDG<unsigned int dim>
volume_handler_DG.hpp

FaceHandlerDG<unsigned int dim>
face_handler_DG.hpp

DoFHandler<lifex::dim>
deal.II library

DoFHandlerDG<class basis>
dof_handler_DG.hpp

2.3.1. VolumeHandlerDG

The class VolumeHandlerDG<unsigned int dim> is used to accomplish the main operations
on a discontinuous Galerkin volume element. It has to be associated with a domain cell (using
the reinit method, it can be reinitialized on a different cell) and performs some element-wise
operations such as:

• quadrature_real(const unsigned int q): returns the q-th spatial quadrature point
position on the actual element,

• quadrature_ref(const unsigned int q): returns the q-th spatial quadrature point
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position on the reference element,

• quadrature_weight(const unsigned int q): returns the quadrature weight associated
to the correspondent q-th quadrature node,

• get_jacobian_inverse(): returns the inverse of the Jacobian of the reference-to-actual
transformation.

2.3.2. FaceHandlerDG

The class FaceHandlerDG <unsigned int dim> is instead useful for the main operations on
the faces of a discontinuous Galerkin element. It inherits from the VolumeHandlerDG<unsigned
int dim> class in Section 2.3.1 and many methods work similarly also because the template
specialization permits to easily decrease the spatial dimension by 1. On the other hand, the
reinit method associates the class not only to an element but also to a face and, furthermore,
some methods are added:

• corresponding_neigh_index(const unsigned int q): to obtain the associated quadra-
ture point index of the neighbor element on the shared face,

• get_normal(): outward normal vector on the current element and face,

• get_measure(): returns the measure of the face.

2.3.3. DoFHandlerDG

The class DoFHandlerDG<class basis> is used to work with global and local degrees of freedom
and their mapping. DUBeat exploits this class instead of the DoFHandler<lifex::dim> class
from deal.II because the latter, at the moment, cannot distribute DOFs on tetrahedra with
polynomial orders greater than 2. When using the Dubiner basis, this implementation permits
overcoming this issue thanks to the use of an internal dof_map and the definition of the basis
of every order (even >2) from DUBValues (Section 2.2.1). On the other hand, it is not possible
to do the same with DGFEM case because the basis functions come directly from the deal.II

FiniteElement classes. Consequently, the Dubiner basis can be used with every order, while
DGFEM with order at most 2.
Concretely, most of the methods override from the base class while the key feature is the
overwriting of the distribute_dofs method that, for the DGFEM basis, it works as in the
base class (with the restriction of order ≤ 2) and, for Dubiner basis, it exploits the internal
dof_map and, so, permits higher orders.
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2.4. Quadrature classes

Quadrature<dim>

deal.II library

QGaussLegendreSimplex<unsigned
int dim>

QGaussLegendreSimplex.hpp

2.4.1. QGaussLegendreSimplex

The class QGaussLegendreSimplex<unsigned int dim> represents the Gauss-Legendre quadra-
ture formula on simplex elements. This quadrature formula is not implemented yet in deal.II

and, for this reason, DUBeat adds it to the deal.II quadrature methods inheriting from the
Quadrature<unsigned int dim> class.
The conceptual idea is the following:

1. Computation of the Gauss-Legendre nodes and weights on a given 1-dimensional interval,
this is done by the external method gauleg(const double a,const double b, const

unsigned n_points),

2. Tensorization of the computed 1D nodes to the 2D or 3D domains depending on the
template specialization.

3. Transformation from the square domain to the simplex domain (see equations (1.8),
(1.10)).

2.5. Assembly classes

AssembleDG<class basis>
assemble_DG.hpp

2.5.1. AssembleDG

The class AssembleDG<class basis> is used to construct the main local matrices for discon-
tinuous Galerkin methods from Section 1.1. As for VolumeHandlerDG and FaceHandlerDG, it
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exploits a reinit method in order to be associated to a local element and/or face. Then, dif-
ferent methods can be used to compute local matrices on that cell/face. Consider the following
notation:

• K is the volume of the associated element,

• F is the associated face,

• φi is the i-th basis function from the associated element,

• the + superscript indicates that the basis function evaluated on the face is the one from
the same associated element,

• the − superscript indicates that a basis function evaluated on the face is the one from
the neighbor element,

• n+, n− are the outward and inward normal vectors with respect to the associated face.

Then, the main methods can be summarised in the following list.

• local_V: assembly of local stiffness matrix V (i, j) =
∫
K ∇φj · ∇φi dx.

• local_M: assembly of local mass matrix M(i, j) =
∫
K φjφi dx.

• local_rhs: assembly of the local forcing term f(i) =
∫
K fφi dx, where f is the known

forcing term of the problem.

• local_rhs_edge_dirichlet: assembly of the local matrix associated to non-homogeneous
Dirichlet boundary conditions fdir(i) =

∫
F γuφ+

i − θu∇φ+
i ·n ds, where γ is the regularity

coefficient, θ is the penalty coefficient and u the known solution of the problem.

• local_rhs_edge_neumann: assembly of the right hand side term associated to non-
homogeneous Neumann boundary conditions fneu(i) =

∫
F φig ds, where g is the gradient

of the known solution of the problem.

• local_SC: assembly of the component of the local matrix S (see equation (1.4)) that is
evaluated on the same side of the edge, the method returns SC(i, j) =

∫
F γφ+

j φ
+
i ds,

where γ is the regularity coefficient.

• local_SN: assembly of the component of the local matrix S that is evaluated on the two
sides of the edge, the method returns SN(i, j) = −

∫
F γφ+

j φ
−
i ds, where γ is the regularity

coefficient

• local_IC: assembly of the component of the local matrix I that is evaluated on the same
side of the edge, the method returns θ · IC(i, j) = − θ

2

∫
F ∇φ+

i · n+φ+
j ds and ICT (i, j) =

−1
2

∫
F ∇φ+

j · n+φ+
i ds, where θ is the penalty coefficient.
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• local_IB: assembly of the component of the local matrix I that is evaluated on the
boundary edges, the method returns θ · IB(i, j) = − θ

∫
F ∇φ+

i · n+φ+
j ds and IBT (i, j) =

−
∫
F ∇φ+

j · n+φ+
i ds, where θ is the penalty coefficient.

• local_IN: assembly of the component of the local matrix I that is evaluated on the two
sides of the edge, the method returns θ · IN(i, j) = θ

2

∫
F ∇φ+

i · n+φ−
j ds and INT (i, j) =

1
2

∫
F ∇φ+

j · n+φ−
i ds, where θ is the penalty coefficient.

• local_u0_M_rhs: assembly of the right hand side term associated to the previous time-
step solution in time-dependent problems F (i) =

∫
K unφi dx, where un is the solution at

a generic previous step n.

In addition to the core local matrices, there are also some specific definitions that are used for
particular models such as local_w0_M_rhs and local_non_linear_fitzhugh.
Note that the matrices I and S from Section 1.1 correspond to:

• −θ · I =
∑

F∈FI
h
local_IC.first+

∑
F∈FI

h
local_IN.first+

∑
F∈FB

h
local_IB.first,

• S=
∑

F∈Fh
local_S+

∑
F∈FI

h
local_SN,

where we indicate with .first the first matrix of the returned tuple.

2.6. Error classes

ComputeErrorsDG<class basis>
compute_errors_DG.hpp

2.6.1. ComputeErrorsDG

The class ComputeErrorsDG<class basis> computes the errors between the numerical solution
and the exact solution. Four definitions of error are implemented:

• compute_error_inf: ∥u− uh∥L∞(Ω) := supx∈Ω |u(x)− uh(x)|,

• compute_error_L2: ∥u− uh∥2L2(Ω) :=
∫
Ω
|u(x)− uh(x)|2 dx,

• compute_error_H1: ∥u− uh∥2H1(Ω) := ∥u− uh∥2L2(Ω) + ∥∇u−∇uh∥2L2(Ω),

• compute_error_DG: ∥u− uh∥2DG(Ω) := ∥∇u−∇uh∥2L2(Ω) + γ∥[[u−∇uh]]∥2L2(F).

where:

• u is the exact solution,
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• uh is the numerical solution,

• The L2(F) norm is computed on the faces instead of the volume.

• All the other terms follow the nomenclature of Section 1.1.

Furthermore, the class can create and update a datafile containing the errors from different
simulations that have been previously run with different polynomial orders and grid refinements.
This is a .data file and it is created by the initialize_datafile method and updated by the
update_datafile method.

2.7. Models

CoreModel
lifex library

ModelDG<class basis>
model_DG.hpp

ModelDG_t<class basis>

model_DG_t.hpp

LaplaceDG<class basis>
laplace_dg.hpp

HeatDG<class basis>
heat_dg.hpp

MonodomainFHNDG<class basis>
monodomain_fhn_dg.hpp

As anticipated, DUBeat provides some models that one can use to test and validate the library.
These classes can be split into three groups:

• ModelDG and ModelDG_t are not proper models, but instead templates that are helpful to
define models, indeed they are abstract classes. They are placed under the source folder
as the core classes.

• LaplaceDG and HeatDG are example problems to test, respectively, stationary problems
and time-dependent problems.
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• MonodomainFHNDG is the first electrophysiology problem in DUBeat. Other problems are
aimed to be added in a future release.

2.7.1. ModelDG

The class ModelDG<class basis> represents a template for the resolution of problems using
discontinuous Galerkin methods.
The main method is run which indeed calls in sequence all the steps that are necessary for a
complete simulation:

1. create_mesh: loading of the mesh (picking the default mesh files from the meshes folder
or from a user-defined path),

2. setup_system: setup the problem with its objects and variables before the resolution,

3. initialize_solution: initialize the vectors for the exact and numerical solutions,

4. discretize_analytical_solution: projection of the analytical exact solution to basis
coefficients, needed for the computation of some errors. Note that this operation is
template-specialized depending on the basis used.

5. assemble_system: assembly of the linear system using the AssembleDG class. It is char-
acteristic of the specific problem and, therefore, it is pure virtual.

6. solve_system: resolution of the algebraic system,

7. compute_errors: compute and output of the errors using the ComputeErrorsDG class.

8. output_results: output the numerical and exact solution contour plots as files that can
be viewed using ParaView. Note that the generation of the graphical output is possible
only if the polynomial order is strictly less than 3 because it requires a conversion to the
DGFEM discretization. Read Section 2.3.3 for the full explanation.

2.7.2. ModelDG_t

The class ModelDG_t<class basis> inherits from ModelDG<class basis> (Section 2.7.1) and
represents the resolution of time-dependent problems using discontinuous Galerkin methods.
The method run is overridden since it performs a loop over the time steps, calling for each
iteration assemble_system and solve_system. Furthermore, new methods are added because
they are necessary for this kind of problem:

• time_initialization: setup for time-dependent problems at the initial time,

https://www.paraview.org/
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• update_time: to perform the time increment,

• intermediate_error_print: computation of the errors at an intermediate time step.

Moreover, this class introduces the BDF time advancing schemes through the lifex class
BDFHandler and it is possible for the user to set the order for the BDF scheme.

2.7.3. LaplaceDG

The class LaplaceDG<class basis> solves the Laplace equation with Dirichlet boundary con-
dition: −∆u = f in Ω,

u = uex on ∂Ω.

Adopting a discontinuous Galerkin method, the weak formulation of the problem has been
already shown in equation (1.5) and the correspondent linear system (using the matrices defined
in Section 1.1) is:

(V − IT − θI + S)u = f + fdir

where:
fdiri = −θ

∑
F∈FB

h

∫
F

uex∇hφi · n+
∑

F∈FB
h

∫
F

γuexφi

It can be solved using the FEM basis (basis=dealii::FE_SimplexDGP<lifex::dim>) or the
Dubiner basis (basis=DUBValues<lifex::dim>). Boundary conditions and forcing terms are
assigned knowing that the exact solution is:

d = 2 : uex(x, y) = ex+y, (x, y) ∈ Ω = (1, 1)2,

d = 3 : uex(x, y, z) = ex+y+z, (x, y, z) ∈ Ω = (1, 1)3.

2.7.4. HeatDG

The class HeatDG<class basis> solves the heat equation with Neumann boundary condition:
∂u
∂t

−∆u = f in Ω× t ∈ (tstart, tend),

∇u · n = g on ∂Ω× t ∈ (tstart, tend),

u = uex in Ω× t = tstart.
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Adopting a discontinuous Galerkin method, the weak formulation of the model is the following:

Find uh ∈ Vh such that ∀t ∈ (tstart, tend) :∑
K∈Th

∫
K

∂uh

∂t
vh +

∑
K∈Th

∫
K
∇uh · ∇vh −

∑
F∈FI

h

∫
F

{{∇huh}} · [[vh]]− θ
∑
F∈FI

h

∫
F

[[uh]] · {{∇hvh}}

+
∑
F∈FI

h

∫
F

γ[[uh]] · [[vh]] =
∫
Ω

fvh +
∑

F∈FB
h

∫
F

gvh ∀vh ∈ Vh,

Being a time-dependent model (indeed this class is inherited from ModelDG_t<class basis>)
we have to discretize the interval (tstart, tend) in Nt intervals of length ∆t (time step), such that
the weak formulation with an explicit Euler scheme for the time discretization becomes:

Given u0
h = uex, find un+1

h ∈ Vh such that ∀n ∈ {0, . . . , Nt − 1}:

∑
K∈Th

∫
K

un+1
h − un

h

∆t
vh +

∑
K∈Th

∫
K
∇un+1

h · ∇vh −
∑
F∈FI

h

∫
F

{{∇hu
n+1
h }} · [[vh]]

−θ
∑
F∈FI

h

∫
F

[[un+1
h ]] · {{∇hvh}}+

∑
F∈FI

h

∫
F

γ[[un+1
h ]] · [[vh]] =

∫
Ω

fn+1vh +
∑

F∈FB
h

∫
F

gn+1vh ∀vh ∈ Vh,

Consequently, the linear system to solve at each time step is:(
1

∆t
M + V − IT − θI + S

)
un+1 = fn+1 + fn+1

neu +
1

∆t
Mun

where:
Mi,j =

∑
K∈Th

∫
K
φiφj

fnneui
=

∑
F∈FB

h

∫
F

gnφi

It can be solved using the FEM basis (basis=dealii::FE_SimplexDGP<lifex::dim>) or the
Dubiner basis (basis=DUBValues<lifex::dim>). Boundary conditions and forcing terms are
assigned knowing that the exact solution is:

d = 2 : uex(x, y, t) = sin(2πx) sin(2πy)e−5t, Ω = (1, 1)2,

d = 3 : uex(x, y, z, t) = sin
(
2πx+

π

4

)
sin

(
2πy +

π

4

)
sin

(
2πz +

π

4

)
e−5t, Ω = (1, 1)3.

and t ∈ [0, T ], where T is specified in the parameter file (see Section 3.3.1).
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2.7.5. MonodomainFHNDG

The class MonodomainFHNDG<class basis> solves the monodomain equation coupled with the
Fitzhugh-Nagumo ionic model and Neumann boundary conditions. We refer to [12] and [7] for
a description of the monodomain problem from the cardiac electrophysiology. The choice of
the Fitzhugh-Nagumo model is mainly due to its performance and simplicity. This model was
originally proposed in [13] and a DG formulation of a such problem is already present in [2].
The system reads:

χmCm
∂Vm

∂t
−∇ · (Σ∇Vm) + χmIion(Vm, ω) = Iext in Ω× (tstart, tend),

Iion(Vm, ω) = kVm(Vm − a)(Vm − 1) + ω, in Ω× (tstart, tend),

∂ω
∂t

= ϵ(Vm − Γω) in Ω× (tstart, tend),

Σ∇Vm · n = g on ∂Ω× (tstart, tend),

Vm = Vmex in Ω× t = tstart,

ω = ωex in Ω× t = tstart.

where:

• Vm is the trans-membrane potential,

• ω is the gating variable,

• Σ is a known positive definite tensor that represents the non-isotropic conductivity,

• χm, Cm are known positive constants of the general monodomain problem,

• k, a, ϵ,Γ are known constants of the Fitzhugh-Nagumo ionic model,

• Iext is the ionic current,

• g is the Neumann boundary condition data for Vm,

• Vmex , ωex are the initial conditions for Vm, ω respectively.

For a complete explanation of these terms, we again refer to [12].
Solving this problem with the discontinuous Galerkin method, we obtain the following weak
formulation:
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For any t ∈ (tstart, tend) find V h
m, ωh ∈ Vh such that:

∑
K∈Th

∫
K
χmCm

∂V h
m

∂t
vh +

∑
K∈Th

∫
K
Σ∇V h

m · ∇vh −
∑
F∈FI

h

∫
F

{{∇hV
h
m}} · [[vh]]

−θ
∑
F∈FI

h

∫
F

[[V h
m]] · {{∇hvh}}+

∑
F∈FI

h

∫
F

γ[[V h
m]] · [[vh]] +

∑
K∈Th

∫
K
χmk(V

h
m − 1)(V h

m − a)V h
m

+
∑
K∈Th

∫
K
χmωhvh =

∫
Ω

Iextvh +
∑

F∈FB
h

∫
F

gvh ∀vh ∈ Vh,

∑
K∈Th

∫
K

∂ωh

∂t
vh =

∑
K∈Th

∫
K
ϵ(V h

m − Γωh)vh ∀vh ∈ Vh.

As for the HeatDG<class basis> class, this system represents a time-dependent model that
needs to be further discretized in time. We split the interval (tstart, tend) into Nt intervals of
length ∆t (i.e. the time step), such that the weak formulation coupled with an explicit Euler
scheme for the time discretization becomes:

Given V 0
m = Vmex , ω

0 = ωex, find V n+1
m , ωn+1 ∈ Vh such that ∀n = 0, . . . , Nt − 1:

∑
K∈Th

∫
K
χmCm

V n+1
h − V n

m

∆t
vh +

∑
K∈Th

∫
K
Σ∇V n+1

m · ∇vh −
∑
F∈FI

h

∫
F

{{∇hV
n+1
m }} · [[vh]]

−θ
∑
F∈FI

h

∫
F

[[V n+1
m ]] · {{∇hvh}}+

∑
F∈FI

h

∫
F

γ[[V n+1
m ]] · [[vh]] +

∑
K∈Th

∫
K
χmk(V

n
m − 1)(V n

m − a)V n+1
m

+
∑
K∈Th

∫
K
χmω

n+1vh =

∫
Ω

In+1
ext vh +

∑
F∈FB

h

∫
F

gn+1vh ∀vh ∈ Vh,

∑
K∈Th

∫
K

ωn+1 − ωn

∆t
vh =

∑
K∈Th

∫
K
ϵ(V n

m − Γωn+1)vh ∀vh ∈ Vh.

Hence, the linear system to solve at each time step is:( 1
∆t

+ ϵΓ)Mωn+1 = ϵMV n
m + M

∆t
ωn ⇔ ( 1

∆t
+ ϵΓ)ωn+1 = ϵV n

m + 1
∆t
ωn,

(χmCmM + ΣV − IT − θI + S + χmkC(V n
m))V

n+1
m = fn+1 + fn+1

neu + χmCmMV n
m + χmMωn+1

where:

C(V n
m)i,j =

∑
K∈Th

∫
K
(V n

m − 1)(V n
m − a)φiφj. (2.1)

As usual, it can be solved using the FEM basis (basis=dealii::FE_SimplexDGP<lifex::dim>)
or the Dubiner basis (basis=DUBValues<lifex::dim>). Moreover, the forcing terms and
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boundary conditions are assigned knowning that the exact solutions are:

d = 2 : Vmex(x, y) = sin(2πx) sin(2πy)e−5t, Ω = (1, 1)2,

wex(x, y) =
ϵ

ϵ · Γ− 5
sin(2πx) sin(2πy)e−5t, Ω = (1, 1)2,

d = 3 : Vmex(x, y, z) = sin
(
2πx+

π

4

)
sin

(
2πy +

π

4

)
sin

(
2πz +

π

4

)
e−5t, Ω = (1, 1)3,

wex(x, y, z) =
ϵ

ϵ · Γ− 5
sin(2πx) sin(2πy) sin(2πz)e−5t, Ω = (1, 1)3.

and t ∈ [0, T ], where T , as well as the monodomain and Fitzhugh-Nagumo parameters, are
specified in the parameter file (see Section 3.3.1).

Remark 5. The linear system of this model requires the definitions of two new matrices that
are not part of the standard core matrices from Section 2.5.1 and, therefore, they have been
added to the AssembleDG class methods:

• local_non_linear_fitzhugh: assembly of the equation (2.1) on the local element K,

• local_w0_M_rhs: assembly of the right hand side term associated with the previous time-
step gating variable solution, F (i) =

∫
K wnφi dx where wn is the gating variable solution

at a generic previous step n.

Remark 6. The monodomain problem requires the resolution of a system with two unknown
functions. This fact is in contrast with the ModelDG template setting with a single unknown u.
Hence, the inherited functions run, update_time and time_initialization are overridden.
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3| Dependencies, installation and

execution

In this section, we aim to show step by step how the user can install the open-source library and
use it to solve the implemented models but even how to use DUBeat for user-defined problems.

3.1. Dependencies

Before seeing how to install the library, we need to specify all the dependencies that guarantee
the complete backend and the right functioning of DUBeat.
First of all, the library can be used only on a linux machine with CMake ≥ 3.22.1 and GNU
bash ≥ 5.1.16.
Then, DUBeat 1.0.0 relies almost exclusively on the lifex 1.5.0 installation and its depen-
dencies. So, as a first step, the user should visit the lifex installation page1 to verify he
satisfies all the requirements and should then install it on the device.
More precisely, the library requires the libraries included in the lifex mk module, 2022.0 ver-
sion. This module can be downloaded from here2 and we refer again to the lifex installation
page1 for more information. In particular, DUBeat uses these packages:

• ADOL-C = 2.7.2

• Boost = 1.76.0

• deal.II = 9.3.1

• p4est = 2.3.2

• PETSc = 3.15.1

• TBB = 2021.3.0

• Trilinos = 13.0.1
1https://lifex.gitlab.io/lifex/download-and-install.html
2https://github.com/elauksap/mk/releases/download/v2022.0/mk-2022.0-lifex.tar.gz

https://cmake.org/
https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://lifex.gitlab.io/
https://github.com/coin-or/ADOL-C
https://www.boost.org/
https://www.dealii.org/
http://www.p4est.org/
https://petsc.org/release/
https://github.com/oneapi-src/oneTBB
https://trilinos.github.io/
https://lifex.gitlab.io/lifex/download-and-install.html
https://github.com/elauksap/mk/releases/download/v2022.0/mk-2022.0-lifex.tar.gz
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In addition to the core libraries, other packages need to be installed for supplementary reasons:

• Python ≥ 3.9.6 for the creation of convergence plot figures after simulations on different
grid sizes (see generate_convergence_plots.py).

• Doxygen ≥ 1.9.1 for the generation of the library documentation.

• Graphviz ≥ 2.43.0 for the automatic creation of figures included in the documentation.

• Clang-Format ≥ 14.0.0 for the automatic indentation of the library codes.

• gmsh ≥ 4.0.4 for the generation of mesh files.

• ParaView ≥ 5.9.1 for the analysis and view of numerical solutions.

3.2. Installation

If the core and supplementary libraries are installed, the user can proceed to install DUBeat:

1. To download the library, move to the directory where you desire to install DUBeat version
1.0.0 and use the following bash command.

git clone git@github.com:teocala/DUBeat.git –branch v1.0.0

Notice that the previous operation requires the SSH key authentication, see the GitHub
dedicated page3 for more information.

2. DUBeat is only a header library, so what you have just downloaded is already the library
installation.

3. Modify the variable LIFEX_PATH in the Makefile.inc file specifying your local lifex
directory.

3.3. Execution

3.3.1. How to run the template simulation

/build/main_dubiner_dg.cpp is a template script to run a simulation using one of the pro-
vided models (Laplace, heat or monodomain). To execute it, the user has to:

1. Choose the model and basis functions (between DGFEM and Dubiner) modifying the
main_dubiner_dg.cpp script.

3https://docs.github.com/en/authentication/connecting-to-github-with-ssh

https://www.python.org/
https://doxygen.nl/
https://graphviz.org/
https://clang.llvm.org/docs/ClangFormat.html
https://gmsh.info/
https://www.paraview.org/
https://docs.github.com/en/authentication/connecting-to-github-with-ssh
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2. Go back to the main directory and run make to compile the script.

3. Now that the execution file is ready, move to the build folder and type

./main_dubiner_dg -g

to generate the main_dubiner_dg.prm parameter file.

4. You can now set your parameters in this file without the need to re-compile. In particular,
you can specify the mesh refinement that consists in the choice of the mesh file from the
meshes folder.

5. Finally, write

./main_dubiner_dg

to run your simulation.

3.3.2. Visualization of the results

Results can be viewed and analyzed in two ways:

• By default, you should see on the screen the numerical errors with the exact solution.
In addition, the ComputeErrorsDG class (Section 2.6.1) writes the errors on a .data file.
Finally, you can use Python to run the /extra/generate_convergence_plots.py script
to create plots of the errors for different mesh refinements starting from a .data file.

• The code generates two solution files, open solution.xdmf with ParaView to see the
contour plots of the numerical and exact solutions.

3.4. Documentation, indentation and cleaning

The Make configuration permits to easily perform some operations that are suggested to keep
a neat and working environment in DUBeat, especially for users that want to contribute to
the library or personalize their problems (see Section 3.5). The following operations are to be
executed on the linux command line from the library main folder:

• Run

make doc

to generate the Doxygen documentation under the documentation folder. We remind
that the updated documentation can be always found also here.

https://www.python.org/
https://www.paraview.org/
https://doxygen.nl/
https://matteocalafa.com/DUBeat/
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• Use instead

make indent

to automatically indent all the files using our customized Clang-Format setup.

• To conclude, you can run

make clean

to remove the previously generated execution files. In addition, you can write

make distclean

to perform a complete cleaning, i.e. removing all the generated files such as parameter,
documentation and solution files.

3.5. Personalize the models to solve

We dedicate this paragraph to describe the necessary steps to implement a user-defined model,
i.e. a model that is different from the problems already described in Section 2.7.

• A new model should follow the same structure as the ones in the models folder. This
implies that the class should inherit from ModelDG if it is a stationary problem, while it
should derive from ModelDG_t if it is a time-dependent problem.

• The only method that must necessarily be implemented is assemble_system, which spec-
ifies how the linear system of the problem is defined. However, also all the other methods
can be overridden based on the problem requests or preferences (see for instance Remark
6).

• The addition of a new type of discontinuous Galerkin local matrix needs to be supple-
mented to the assemble_DG.hpp methods.

• As for now, simplices meshes can not be built runtime in lifex. Therefore, some example
meshes are provided in the folder meshes and used in the default version. In case it is
needed to use other .msh files, the user has to adopt the version of the create_mesh

method in ModelDG that accepts a user-defined mesh path.

• To conclude, we remind that the addition of new scripts or folders might require new
Make and indent configurations.

https://clang.llvm.org/docs/ClangFormat.html
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4| Numerical results

This section is aimed to show some numerical results based on the analysis of the errors between
numerical and exact solutions to the models presented in Section 2.7. Convergence rates have
here a dual goal: from one side, guarantee that DUBeat successfully and correctly solves these
model problems and, from the other side, show the performance of the high-order discontinuous
Galerkin methods. These two aspects will be shown respectively in Sections 4.1 and 4.2.

4.1. Grid refinement convergence tests

The following convergence rates are shown to guarantee that the numerical methods imple-
mented in DUBeat converge to simple problem solutions when we refine the mesh. We opt here
to focus only on the results related to the Dubiner basis. Convergence tests with DGFEM
are very similar and the following analysis is enough to guarantee the correct resolution of the
problems. In this setting, we fix a low polynomial order (1 or 2) and we increase gradually
the mesh refinement by picking the different mesh files from the meshes folder. Keeping a low
polynomial degree, we do not benefit much from the high-order methods, however, the perfor-
mance of the methods is not the objective of these tests and the lighter computation due to
small degrees allows the use of more refined meshes.

4.1.1. Results for LaplaceDG

See Section 2.7.3 for more details about the problem. Choosing the Dubiner basis, the model
is, therefore, LaplaceDG<DUBValues<lifex::dim». In the next plots, we define d = 2, 3 as the
spatial dimension, p ∈ N is the polynomial order and h > 0 is the average element length of
the mesh. Results are shown in Figure 4.1, 4.2, 4.3, 4.4.
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Figure 4.1: LaplaceDG, d = 2, p = 1. Expected trends are, in order, h2, h, h, h2. The conver-
gence is correct and, for the DG error, even better than the estimated trend.

Figure 4.2: LaplaceDG, d = 2, p = 2. Expected trends are, in order, h3, h2, h2, h3. The same
comment as in Figure 4.1.
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Figure 4.3: LaplaceDG, d = 3, p = 1. Expected trends are, in order, h2, h, h, h2. The conver-
gence is correct and, for the DG error, even better than the estimated trend.

Figure 4.4: LaplaceDG, d = 3, p = 2. Expected trends are, in order, h3, h2, h2, h3. The same
comment as in Figure 4.3.
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Figure 4.5: HeatDG, d = 2, p = 1. Expected trends are h2, h, h, h2. The convergence is correct.

Figure 4.6: HeatDG, d = 2, p = 2. Expected trends are, in order, h3, h2, h2, h3. The same
comment as in Figure 4.5.
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Figure 4.7: HeatDG, d = 3, p = 1. Expected trends are, in order, h2, h, h, h2. The convergence
is correct even if the L∞ error reaches gradually the right trend.

Figure 4.8: HeatDG, d = 3, p = 2. Expected trends are, in order, h3, h2, h2, h3. Trends seem
correct but, due to the large time of execution, it is not possible to refine more.
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4.1.2. Results for HeatDG

See Section 2.7.4 for more details about the problem. Again, we only focus on the Dubiner
basis and, so, we select HeatDG<DUBValues<lifex::dim». In the following figures, we set the
final time T = 0.003, the time step ∆t = 0.0001 and BDF order α = 1. d = 2, 3, p ∈ N and
h > 0 have the same meaning as before. Results are shown in Figure 4.5, 4.6, 4.7, 4.8.

4.1.3. Results for MonodomainFHNDG

See Section 2.7.5 for more details about the problem. The model is
MonodomainFHNDG<DUBValues<lifex::dim», therefore we have two unknowns that are the
trans-membrane potential Vm and the gating variable ω. In particular, the following figures
will regard only Vm, the main solution. We pose the final time T = 0.003, the time step
∆t = 0.0001 and BDF order α = 1. d = 2, 3, p ∈ N and h > 0 have the same meaning as
before. Results are shown in Figure 4.9, 4.10, 4.11, 4.12.
In particular, in Figure 4.12, the final time T is decreased due to the larger time of execution.
In this case, we set T = 0.001.
As for the model parameters, we used the typical values:

• χm = 105 m−1,

• Σ = 0.12 Sm−1,

• Cm = 10−2 Fm−2,

• k = 19.5,

• ϵ = 1.2,

• Γ = 0.1,

• a = 13 · 10−3.
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Figure 4.9: MonodomainFHNDG, d = 2, p = 1. Expected trends are, in order, h2, h, h, h2. The
convergence is correct.

Figure 4.10: MonodomainFHNDG, d = 2, p = 2. Expected trends are, in order, h3, h2, h2, h3.
The convergence is correct except for the L∞ error which shows a h2 trend.
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Figure 4.11: MonodomainFHNDG, d = 3, p = 1. Expected trends are h2, h, h, h2. The conver-
gence is achieved, but the rates are not completely defined.

Figure 4.12: MonodomainFHNDG, d = 3, p = 2. Expected trends are h3, h2, h2, h3. The
convergence is partially correct, but it is not possible to refine more due to computation times.
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So, to conclude this section, it seems evident that most of the simulations correctly converge to
the exact solutions with the expected rates. The only exception is the monodomain problem
in three dimensions because, due to the computational effort, it cannot be analyzed with finer
temporal discretizations and more grid refinements. In particular, one can easily spot the
influence of the temporal discretization error for small grid sizes. The overall small error is,
therefore, disturbed and this is the cause for the change of slopes for small h.
Besides this, we can confirm that the implemented numerical schemes are correct and DUBeat

successfully employs the Dubiner method to solve differential problems.

4.2. Higher order convergence rates

The following study has been performed to assure that the numerical methods implemented
in DUBeat converge at an exponential rate when we increase the polynomial order p ∈ N. We
remind that we are still focusing only on the Dubiner basis. In this setting, we take a coarse
mesh (length of the element ≈ length of the domain) and we visualize the convergence when
we increase the polynomial order. Results are shown in Figure 4.13, 4.14.

Figure 4.13: LaplaceDG, d = 2. Lines are straights, in a semilogy plot this means that the
convergence is exponential (∝ e−α).
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Figure 4.14: LaplaceDG, d = 3. Same comment as in Figure 4.13.

We clearly see that the exponential rate is achieved in both two and three dimensions. This is
another guarantee of the correct behaviour of the methods.
Let us focus now on what this implies in the performance of the high-order methods.
We performed the same computations shown in Figure 4.3 and 4.14 using the HPC cluster from
the MOX department at PoliMi1 keeping track of the computation times and the number of
GMRES iterations for the resolution of the problem linear system. Therefore, starting from the
same configuration (p = 1 and same coarse mesh), we performed in one case a grid refinement
convergence analysis and in the other study a convergence analysis based on the increment of
the polynomial order. Data are shown in Table 4.1 and in Table 4.2.
A comparison between the two tables proves the outstanding performance of the Dubiner
method when the high order is exploited. The choice of a coarse mesh with high orders leads to
a fast simulation with very high accuracy. For instance, the 5th order gives in 9 minutes better
accuracy than the 6-times refined mesh in 20 hours. The discrepancy is also evident from the
number of GMRES iterations for the system solving. We also notice that the results in Table
4.1 are very similar to the errors when using DGFEM and, probably, also the continuous FEM.
The definitions of the errors are the same as Section 2.6.1.

1https://mox.polimi.it/research-areas/hpcmox/

https://mox.polimi.it/research-areas/hpcmox/
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Table 4.1: LaplaceDG, d = 3. Grid refinement with p = 1.

n° ref 1 2 3 4 5 6

time (h:m:s) 00:00:20 00:00:43 00:03:26 00:26:26 02:16:29 20:16:22
GMRES iter 1 1 132 253 1004 1000
L∞ error 1.118910 0.432081 0.117463 0.030616 0.007814 0.001974
L2 error 0.465414 0.035014 0.009014 0.002300 0.000582716 0.000147
H1 error 4.301522 1.291193 0.659523 0.333049 0.167319 0.083858
DG error 6.917900 2.821673 1.132224 0.480651 0.215676 0.101097

Table 4.2: LaplaceDG, d = 3. Polynomial order increment with n° ref = 1.

p 1 2 3 4 5 6

time (h:m:s) 00:00:19 00:00:24 00:00:49 00:02:44 00:09:21 00:29:40
GMRES iter 1 1 1 1 2 2
L∞ error 1.118910 0.549955 0.124414 0.018430 0.002132 0.000188
L2 error 0.465414 0.086423 0.009940 0.000954 0.000073 0.000005
H1 error 4.301522 0.989008 0.143108 0.016139 0.001453 0.000112
DG error 6.917900 2.797505 0.531981 0.074641 0.007822 0.000682

Hence, high-order methods such as the Dubiner method are really promising for the fast and
accurate resolution of differential problems. We expect this performance to be even enhanced
when dealing with steep waves in electrophysiology problems and this is the main motivation
to the next section.

4.2.1. Pseudo-realistic simulation

To conclude, we present the solution of a very simple pseudo-realistic simulation for the class
MonodomainFHNDG<DUBValues<lifex::dim» from Section 2.7.5. It is noteworthy to warn that
no exact solutions are known for these kinds of problems.
In this particular test, the domain concretely represents a square section of the surface of the
heart that is electrically isolated (i.e., the Neumann boundary conditions are homogeneous)
and an external current is applied in a central region for a limited interval of time. From a
concrete perspective, it simulates the action of a defibrillator.
The main parameters are set in table 4.3.
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Table 4.3: Parameters for the pseudo-realistic simulation.

Dimension d = 2

Domain (m) Ω = [−0.025, 0.035]2

Time-step (s) ∆t = 0.0001

Applied current (Am−3) Iext(x, y, t) = 150 · 103 ·
(
It∈[0.001,0.002) · Ix∈(0.004,0.006) · Iy∈(0.004,0.006)

)
Neumann BC (Am−2) g(x, y, t) = 0

Initial conditions Vmex = 0 and ωex = 0

Polynomial degree p = 6

Number of elements 8

Moreover, the model parameters are the same as in Section 4.1.3.
The last two parameters in Table 4.3 are motivated by the fact that a resolution with high
polynomial order coupled with a coarse mesh, as proved in Section 4.2, is a very effective
approach for its time of execution and its accuracy.
The following figures, from Figure 4.15 to Figure 4.22, represent a visualization of the trans-
membrane variable Vm at different time-steps. The highest value is achieved with Vm = 1 (red)
and the lowest is approximately zero (blue).
It is possible to follow the propagation of the steep wave until the entire domain is activated
(i.e., Vm ≃ 1 everywhere). This is coherent with the theory and the realistic phenomena, except
for the dynamics that follows after the activation: after the depolarization, the cardiac cells
should repolarize returning to their initial value at rest. Instead, the potential here stabilizes
at the peak value. This discrepancy was already pointed out in [6] and it is probably due to the
ineffectiveness of the simple Fitzhugh-Nagumo model to fully describe the realistic phenomenon.
Despite the very simplicity of this test, we have encountered once again confirmations for the
correct functioning of the library and its methods. Furthermore, the dynamics of the solution
has an analogy with the same result in [6].
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Figure 4.15: Vm at time 0.01 s. Figure 4.16: Vm at time 0.02 s.

Figure 4.17: Vm at time 0.03 s. Figure 4.18: Vm at time 0.04 s.

Figure 4.19: Vm at time 0.045 s. Figure 4.20: Vm at time 0.05 s.

Figure 4.21: Vm at time 0.06 s. Figure 4.22: Vm at time 0.07 s.
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5| Conclusion

DUBeat is a new and promising project that attempts to exploit non-standard methods with the
goal to correctly solve problems that are otherwise challenging when using normal techniques.
The initial and most demanding task was the construction of an efficient, clear and general
structure that permits to easily employ the two DG methods to both standard and realistic
problems. The numerical and computational outcomes from Section 4 are encouraging and
certainly show how the initial idea as well as the demanding work to create DUBeat are really
successful. We also remind that the project started from the initial motivation and results of
[6] that turned out to be optimistic and lead to a more widespread project such as DUBeat.
With this article, we officially publish the DUBeat 1.0.0 version while many improvements will
certainly be considered in the next versions. The main goals are the parallelization of certain
operations and the applications to more realistic and interesting problems. The authors are
indeed already working on a problem that exploits the more realistic ten Tusscher Panfilov ionic
model ([9]) applied to the monodomain model. We hope that the initial excellent results of
the methods will lead to the same level of performance when applied to realistic and complex
simulations. Moreover, we hope that the community could contribute in the future to the
development of the open-source project and concretely enhance its features.
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