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1 Introduction

The aim of this project is to study and implement a suitable numerical scheme for
the approximate solutions of the Bidomain Problem, a well-known system of non-linear
partial di�erential equations that has been developed in the context of the modeling of
electrophysiology of the human heart.
This work is basically the continuation of a two-year-long study carried out by three past
course projects ([4], [2], [10]). In particular, the broad goal of this project is to improve
the results obtained in [10] (Marta and Perego) for the Bidomain model. Indeed, we
provide further analysis to go deeper in the study of stability and convergence of a
Discontinuous Galerkin discretization and to assess the reliability of this method for
more realistic scenarios. As a matter of fact, this work is primarily based on these
provided data and Matlab© codes.

1.1 The physical problem

We provide in what follows a brief introduction to the Bidomain equations. For a more
complete explanation, we instead refer to [12].
The mechanical contraction and expansion of the human heart have their origin in the
electrical activation of the cardiac cells. At each heartbeat, myocytes are activated and
deactivated following a characteristic electrical cycle (Fig. 1).

Figure 1: Membrane potential in function of time (one cardiac cycle)

The cell is initially at rest (−90mV , step 4). At a certain point, its potential increases
rapidly (≈ 2ms) and reaches the value of +20mV : the cell is activated. Later, a plateau
near 0mV is observed and then a slow repolarization to the initial potential; cf. Fig. 1.
From a microscopical point of view, we could study the dynamics acting in each single
cell (as a consequence of the passage of chemical ions through speci�c channels, e.g.
Ca2+, Na+,K+). From a macroscopical point of view, instead, one can describe it as
a continuous electrical di�usion over the entire cardiac surface. Even if this consists in
a very rapid phenomenon, the study of such propagation could be very interesting in
order, for instance, to detect diseases in sick patients.
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1.2 Mathematical models

Starting from the circuit in Figure 2 and applying general electromagnetism laws, the
Bidomain model has been formulated (see [12] for more details and/or [7] for the complete
derivation).

Figure 2: Simpli�ed circuit to model the intracellular and extracellular potential dynamics

The general formulation is the following:

Problem 1 (Bidomain model). Find φi and φe such that:χmCm
∂Vm
∂t −∇ · (Σi∇φi) + χmIion = Iexti , in Ωmus × (0, T ],

−χmCm∂Vm
∂t −∇ · (Σe∇φe)− χmIion = −Iexte , in Ωmus × (0, T ].

where:

� φi, φe are the Intracellular and Extracellular Potentials (unknowns),

� Vm = φi − φe is the Trans-membrane Potential,

� χm, Cm are known positive constants,

� Σi,Σe are known positive de�nite tensors,

� Iexti , Iexte are applied currents,

� Iion is the Ionic Current,

� Ωmus is the cardiac domain (myocardium + endocardium + epicardium).

Actually, this system is not complete since it misses boundary and initial conditions and
a suitable model for Iion. Initial conditions and Neumann boundary conditions for φi
and φe are then imposed. For the de�nition of Iion, instead, a reduced ionic model is
chosen, in particular the FitzHugh-Nagumo model. Summing up:
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Problem 2 (Bidomain + FitzHugh-Nagumo model with Neumann boundary condi-
tions). Find φi and φe such that:

χmCm
∂Vm
∂t −∇ · (Σi∇φi) + χmIion(Vm, w) = Iexti , in Ωmus × (0, T ],

−χmCm∂Vm
∂t −∇ · (Σe∇φe)− χmIion(Vm, w) = −Iexte , in Ωmus × (0, T ],

Iion(Vm, w) = kVm(Vm − a)(Vm − 1) + w, in Ωmus × (0, T ],
∂w
∂t = ε(Vm − γw), in Ωmus × (0, T ],

Σi∇φi · n = bi, on ∂Ωmus × (0, T ],

Σe∇φe · n = be, on ∂Ωmus × (0, T ],

Initial conditions for φi, φe, w, in Ωmus × {t = 0}.

where:

� w is the gating variable (unknown),

� k, a, ε, γ are known constants,

� bi, be are the boundary conditions data,

� n is the outward normal vector.

Moreover, if we sum the �rst two equations of Problem 2, we integrate both sides over Ω
and we use the divergence theorem, we easily get the following compatibility condition,
necessary for the existence of the solution:

Compatibility condition

∫
Ω
Iexti −

∫
Ω
Iexte = −

∫
∂Ω
bi −

∫
∂Ω
be. (1)

Even when it is not explicitly declared, boundary conditions and forcing terms are al-
ways chosen to satisfy equation (1).

From now on, the system of equations given by Problem 2 will be the reference analytical
problem for the development of the forthcoming numerical schemes.
To conclude, there exist other famous and useful models, such as theMonodomain model,
but this is just a simpli�cation of the Bidomain as, in this case, it is assumed that φi and
φe are proportional. However, thanks to its simplicity, we often tested the code starting
from the Monodomain implementation of the project [2] instead of analyzing directly
the Bidomain model reported.
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1.3 State of the art

As we have already introduced, our project initially aimed to continue and improve the
work of a previous project [10].
The results obtained using unitary parameters, namely χm = Σi = Σe = Cm = k =
ε = γ = a = 1, were actually quite satisfactory. On the other hand, the choice of
more realistic/experimental values for the parameters (that are often very big or very
small) caused bad consequences to the accuracy of the schemes or even to their sta-
bility. In particular, we observed that the choice of Cm ≈ 10−2 highly compromised
the stability of the numerical schemes (fact that was already noticed in [2]). This issue
heavily limits the use of theMatlab code for research and/or experimental simulations
as it guarantees convergence to the right solution only in few and non-realistic problems.
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2 Semi-discrete Discontinuous Galerkin formulation

2.1 Discontinuous Galerkin weak formulation

Starting from the strong form given by Problem 2, the next step is the achievement
of a suitable Discontinuous Galerkin semi-discrete formulation. Full descriptions and
justi�cations of all the terms are present in [10] .
Let us introduce a triangulation τh over Ω, where Fh = FIh ∪ FBh are the set of the
faces of the partition, which includes the internal (FIh) and boundary (FBh ) faces. Let
the DG space be de�ned as V p

h = {vh ∈ L2(Ω) : vh|K ∈ Pp(K) ∀K ∈ τh}, where p
is the degree of the piecewise continuous polynomial, i.e. p ≥ 1. Moreover, we de�ne
Nh = dim(V p

h ) <∞.

Problem 3 (DG weak formulation). For any t ∈ [0, T ] �nd Φh(t) = [φhi (t), φhe (t)]T ∈
[V p
h ]2 and wh(t) ∈ V p

h such that:

∑
K∈τh

∫
K
χmCm

∂V h
m

∂t
vhdω + ai(φ

h
i , vh) +

∑
K∈τh

∫
K
χmk(V h

m − 1)(V h
m − a)V h

mvhdω+

+
∑
K∈τh

∫
K
χmwhvhdω = (Iexti , vh), ∀vh ∈ V p

h ,

−
∑
K∈τh

∫
K
χmCm

∂V h
m

∂t
vhdω + ae(φ

h
e , vh)−

∑
K∈τh

∫
K
χmk(V h

m − 1)(V h
m − a)V h

mvhdω+

−
∑
K∈τh

∫
K
χmwhvhdω = (−Iexte , vh), ∀vh ∈ V p

h ,

∑
K∈τh

∫
K

∂wh
∂t

vhdω =
∑
K∈τh

∫
K
ε(V h

m − γwh)vhdω, ∀vh ∈ V p
h ,

where:

• al(φ
h
l , vh) =

∑
K∈τh

∫
K

(Σl∇hφhl ) · ∇hvhdω −
∑
F∈FI

h

∫
F
{{Σl∇hφhl }} · [[vh]]dσ+

− δ
∑
F∈FI

h

∫
F
{{Σl∇hvh}} · [[φhl ]]dσ +

∑
F∈FI

h

∫
F

Γ[[φhl ]] · [[vh]]dσ l = i, e,

• (Iexti , vh) =
∑
K∈τh

∫
K
Iexti vhdω +

∫
∂Ω
bivhdσ,

• (−Iexte , vh) = −
∑
K∈τh

∫
K
Iexte vhdω +

∫
∂Ω
bevhdσ.

(2)
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Moreover, according to the choice of the coe�cient δ, we can de�ne:

� δ = 1: Symmetric Interior Penalty method (SIP)

� δ = 0: Incomplete Interior Penalty method (IIP)

� δ = −1: Non Symmetric Interior Penalty method (NIP)

In equation (2), Γ is the so called stability parameter, which is de�ned edge-wise as:

Γ := αp
2

h , where α ∈ R has to be chosen high enough for the SIP and IIP formulations.

2.2 Algebraic formulation

Taking {ϕj}Nh
j=1 a basis of V p

h , so that we can write

Φh(t) =

[
φhi (t)
φhe (t)

]
=

[∑Nh
j=1 φi,j(t)ϕj∑Nh
j=1 φe,j(t)ϕj

]
,

wh(t) =

Nh∑
j=1

wj(t)ϕj ,

V h
m(t) =

Nh∑
j=1

Vm,j(t)ϕj =

Nh∑
j=1

(φi,j(t)− φe,j(t))ϕj .

Where φi,j , φe,j and wj ∈ R are the unknown expansion coe�cients ∀i, j = 1, . . . Nh.
Then, we introduce the matrices:

(Vl)ij =
∑
K∈τh

∫
K∇hϕj · Σl∇hϕi,

(ITl )ij =
∑

F∈FI
h

∫
F {{Σl∇hϕj}} · [[ϕi]],

(Il)i,j =
∑

F∈FI
h

∫
F [[ϕj ]] · {{Σl∇hϕi}},

(Sl)i,j =
∑

F∈FI
h

∫
F Γl[[ϕj ]] · [[ϕi]],


Al = (Vl − ITl − θIl + Sl)

l = i, e,

Γl|F = (nTF Σl nF ) Γ, with nF outward normal vector of F,

We also de�ne:
Ai ∈ RNh×Nh Intra-cellular sti�ness matrix,

Ae ∈ RNh×Nh Extra-cellular sti�ness matrix,

Mij =
∑
K∈τh

∫
K
ϕjϕi Mass matrix,

C(uh)ij =
∑
K∈τh

∫
K
χmk(uh − 1)(uh − a)ϕjϕi Non-linear matrix,

F hi,j =
∑
K∈τh

∫
K
Iexti ϕj +

∑
F∈FB

h

∫
F
biϕj Intra-cellular forcing term,
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F he,j = −
∑
K∈τh

∫
K
Iexte ϕj +

∑
F∈FB

h

∫
F
beϕj Extra-cellular forcing term,

Therefore, our semi-discrete algebraic formulation is as follows:

Problem 4 (DG algebraic formulation). Find Φh(t) = [φhi (t), φhe (t)]T ∈ [V p
h ]2 and

wh(t) ∈ V p
h for any t ∈ (0;T ] such that:

χmCmM
˙V h
m +Aiφ

h
i + C(V h

m)V h
m + χmMwh = F hi ,

−χmCmM ˙V h
m +Aeφ

h
e − C(V h

m)V h
m − χmMwh = F he ,

Mẇh(t) = εM(V h
m(t)− γwh(t)),

Supplemented with suitable initial conditions.
An alternative and more compact version is given by:

Problem 5 (DG algebraic formulation - 2). Find Φh(t) = [φhi (t), φhe (t)]T ∈ [V p
h ]2 and

wh(t) ∈ V p
h for any t ∈ (0;T ] such that:

χmCm

[
M −M
−M M

][
φ̇hi (t)

φ̇he (t)

]
+

[
Ai 0

0 Ae

][
φhi (t)

φhe (t)

]
+

[
C(V h

m) −C(V h
m)

−C(V h
m) C(V h

m)

][
φhi (t)

φhe (t)

]
+

+χm

[
M 0

0 −M

][
wh(t)

wh(t)

]
=

[
F hi
F he

]
,

Mẇh(t) = εM(V h
m(t)− γwh(t)).
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3 High-order Dubiner basis functions

3.1 Analytical aspects

So far, we have described a general semi-discrete discontinuous formulation without
examining which basis to use to generate the V p

h space. Usually, the common choice
consists in the classical hat functions from FEM. It is also one of the simplest choices,
for this reason, our provided code was initially implemented with this basis. However,
the very novelty of this study is the adoption of a new kind of basis, completely di�erent
from the previous and commonly known as "Dubiner basis" [8], which is well suited to
high-order approximations.
How we will see soon, the peculiarity of this family of functions is that it consists of
orthogonal polynomials de�ned on the reference triangle

K̂ = {(ξ, η) : ξ, η ≥ 0, ξ + η ≤ 1},

and not on the reference square

Q̂ = {(a, b) : −1 ≤ a ≤ 1, −1 ≤ b ≤ 1}.

Formally, if we consider the transformation from Q̂ to K̂ given by:

ξ =
(1 + a)(1− b)

4
, η =

(1 + b)

2
, (3)

Figure 3: Transformation between the reference square (Q̂) to the reference triangle (K̂)

The Dubiner basis corresponds to a suitable basis initially de�ned on the reference square
that is later transformed on the reference triangle using equation (3). This initial basis
is simply obtained with a two dimensional modi�ed tensor product of the Jacobi poly-
nomials on the interval (−1, 1), as described in the following de�nition.

De�nition 1 (Jacobi polynomials). The Jacobi polynomials of coe�cients α, β ∈ R
evaluated in z ∈ (−1, 1) are:

� n = 0
Jα,β0 (z) = 1,
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� n = 1

Jα,β1 (z) =
1

2
(α− β + (α+ β + 2) · z),

� n ≥ 2

Jα,βn (z) =

n∑
k=2

[ (2k + α+ β − 1)(α2 − β2)

2k(k + α+ β)(2k + α+ β − 2)
+

(2k + α+ β − 2)(2k + α+ β − 1)(2k + αβ)

2k(k + α+ β)(2k + α+ β − 2)
Jα,βk−1(z)+

−2(k + α− 1)(k + β − 1)(2k + α+ β)

2k(k + α+ β)(2k + α+ β − 2)
Jα,βk−2(z)

]
.

The main property of these polynomials is the following:

Proposition 1. {Jα,βi , i = 0, 1, 2 . . . } is orthogonal with respect to the Jacobi weight

w(x) = (1− x)α(1 + x)β, i.e.:∫ 1

−1
(1− x)α(1 + x)βJα,βm (x)Jα,βq (x) dx =

2

2m+ 1
δmq ∀i, j,m, q ≥ 0.

We can now de�ne explicitly the Dubiner basis.

De�nition 2 (Dubiner basis). The Dubiner basis that generates the space Pp(K̂) of

polynomials of degree p over the reference triangle is the set of functions:

φij : K̂ → R,

φij(ξ, η) : = cij(1− b)jJ0,0
i (a)J2i+1,0

j (b) =

= cij2
j(1− η)jJ0,0

i (
2ξ

1− η
− 1)J2i+1,0

j (2η − 1),

for i, j = 0, . . . , p and i+ j ≤ p, where

cij :=

√
2(2i+ 1)(i+ j + 1)

4i

and Jα,βi (·) is the i-th Jacobi polynomial of Def. 1.

As we have anticipated, the following result holds, cf. [14].

Proposition 2. The Dubiner basis is orthonormal in L2(K̂) ∀p ≥ 0:∫
K̂
φij(ξ, η)φmq(ξ, η) dξ dη = δimδjq ∀i, j,m, q ≥ 0.
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Figure 4: Non-zero elements in the mass matrix when adopting Dubiner basis

Notice that, thanks to Proposition 2, the mass matrix of the DG space turns out to be
diagonal. See Fig. 4 as a con�rmation.
It is noteworthy to point out that transformation 3 is bijective, it can be inverted but it
needs some care. The natural inverse would be:

a =
2ξ

1− η
− 1 b = 2η − 1,

that has already been used for De�nition 2. However, a is not de�ned for η = 1, i.e.
for the sole point (0, 1) of the reference triangle. Moreover, in [14] it is shown that a
value cannot be achieved with continuity prolongation because of a second type singu-
larity. Even so, the transformation is still e�ective because it can be easily shown that
the evaluations of the Dubiner basis functions in (ξ, η) = (0, 1) are the same for every
value of a from -1 to 1. For the code implementation, we bypassed this issue with some
conditional statements in which we set a the conventional value -1. Another solution
would be to avoid the evaluation in the exact point choosing instead a near point.

In general, the orthogonality property implies some good numerical qualities, not only
the diagonalization of the mass matrix. For instance, in [3] interesting bounds for the
condition number have been proved. For this reason, we opted for this choice aiming to
improve the previous results, at least from the space discretization side.

On the other hand, there are also some di�culties arising when one chooses to abandon
the familiar FEM basis. First of all, the coe�cients of a discretized function have only
modal meaning and they no more represent the nodal values of the function itself. This
fact needs some extra work when one needs to switch from the original functions to the
discretized functions and vice versa, as it will be shown in Section 3.3. Secondly, one
can notice that these functions are not "boundary conditions friendly". What we mean
is that, if compared to FEM basis, they have no particular properties on the boundary
to let easily impose homogeneous boundary conditions. Thus, they should be again
transformed, this time in a boundary adapted form. We address to [11] for a short de-
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scription of this procedure. Fortunately, we do not need to set this transformation as in
the discontinuous formulation boundary conditions are imposed only weakly. It means
that the boundary conditions' choice does not imply the choice of the vectorial space as
in continuous Galerkin methods. The discretized space is always the same, only some
terms in the weak formulation have in case of need to be changed. For this reason, the
match of Discontinuous Galerkin and Dubiner basis results to be particularly successful.

To conclude, we refer to [14] for the transformation and the de�nition of the Dubiner
basis with tetrahedra, i.e. in dimension n = 3.

3.2 Implementation

OurMatlab code allows the user to select which basis to adopt (FEM or Dubiner) and
the order of polynomials until p=3. We chose to call D1, D2, D3 these 3 families of basis
functions, thanks to the similarity to the P1, P2, P3, �nite element basis functions.
As explained in Section 1.3, our starting point was the code implemented by the previous
projects, namely the resolution of the Bidomain Model through FEM basis (P1, P2, P3).
As follows, our �rst goal was the implementation of methods to evaluate the Dubiner
basis functions (D1, D2, D3) and their gradients in the quadrature points. We omit the
full code as it is not particular interesting: it barely follows the de�nitions of Section 3.1
with the addition of some technicalities. These scripts are: eval_jacobi_polynomial.m,
basis_legendre_dubiner.m, evalshape_tria_dubiner.m.

Moreover, some conditional statements and some extra methods (as matrix2D_dubiner.m)
were added to let the user easily switch from one basis to another (simply and once via
dati.m).

More interesting are instead the scripts dubiner_to_fem.m and fem_to_dubiner.m, used
to convert the Dubiner modal coe�cients of the vector solution to the nodal values of
the approximated function and vice versa. For this reason, they deserve some further
explanations.

3.3 Switch from the modal expansion coe�cients to the Lagrangian

ones

One of the many advantages of the FEM basis is that there exists a bijection between the
basis functions and some particular spatial points in such a way that the evaluation of a
basis function in one of these points is equal to 1 only if that point is the one associated
to the function and 0 otherwise, i.e.:

ψi(xj) = δij . (4)

Obviously, this property does not hold when we work with the Dubiner basis. Indeed,
these functions are not associated with any spatial point. This implies that the Dubiner
coe�cients of a function u ∈ V p

h are not the evaluation at suitable points of the dis-
cretized function itself. They have a completely di�erent meaning, they are now modal
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values instead of being nodal. For this reason, we introduced two new functions that
transform the coe�cients of the solution w.r.t. the FEM basis to the coe�cients w.r.t.
the Dubiner basis and vice versa.

Consider an element K ∈ τh and {ψi}pi=1,{ϕj}
q
j=1 as, respectively, the set of FEM

functions and the set of Dubiner functions with support in K. In addition, consider
{ûi}pi=1,{ũj}

q
j=1 as, respectively, the FEM and Dubiner coe�cients of a function uh.

3.3.1 From Dubiner basis to FEM basis

Let us start from the transformation to the FEM coe�cients. We now exploit the
property in equation (4), i.e. the coe�cient ûi is nothing else but the evaluation of uh
on the i-th degree-of-freedom point, then:

ûi =

q∑
j=1

ũjϕj(xi), i = 1, . . . p (5)

where xi is the point associated to the ψi basis function.
This formula has been implemented in dubiner_to_fem.m script (Section 8.2.1).

3.3.2 From FEM basis to Dubiner basis

Instead, to compute the coe�cients conversely, we need to exploit the fact that the
Dubiner basis is L2-orthonormal (Proposition 2). We then need to compute a L2 scalar
product between the FEM discretized function and each Dubiner basis function. That
is:

ũj =

∫
K
uh(x)ϕj(x) dx =

∫
K

p∑
i=1

ûiψi(x)ϕj(x) dx =

p∑
i=1

(∫
K
ψi(x)ϕj(x) dx

)
ûi

j = 1, . . . q

(6)

This slightly more di�cult formula has been reproduced in fem_to_dubiner.m (Section
8.2.2) using Gauss-Legendre quadrature formulas.

3.3.3 Final remarks

If the Dubiner functions are chosen as Galerkin basis, both the transformations are
needed for the code implementation. Formula (5) is needed to plot and compute errors
after the resolution of the system. Formula (6) is instead needed to convert the FEM
initial data u0 into a vector of Dubiner coe�cients before the resolution of the system.

In order to be rigorous, but also for the sake of simplicity, these transformations are
implemented only from Pn to Dn, n = 1, 2, 3 and vice versa, where Pn stands for
the FEM basis of n-th polynomial degree, meanwhile Dn is the Dubiner basis of n-th
polynomial degree. With this choice, the two bases generate the same space V p

h and
then the transformation infers only on the coe�cients without modifying the functions.
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Otherwise, decreasing n would mean losing signi�cant information, while increasing n
does not substantially improve the quality of the solution as it initially belonged to a
lower order space. Moreover, choosing the same degree for P and D implies several
simpli�cations, for instance the same number of local nodes (nln). For this reason, both
p and q are actually replaced with nln in the code.
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4 Temporal discretization

So far, we have just studied the space discretization while a temporal discretization is
still needed to totally discretize the Bidomain time-dependent problem. Thus, we divide
the interval (0,T] into N subintervals (tn, tn+ 1] of length ∆t such that tn = n∆t ∀n =
0, · · · , N − 1, we then assume our fully discretized solution as V n

m ≈ V h
m(tn).

Starting from a semi-implicit scheme, we implemented and tested 2 further temporal
strategies that we will refer to as: Godunov operator-splitting and quasi-implicit operator-

splitting.

4.1 The semi-implicit method

One of the most famous and used temporal scheme for a non-linear problem such as the
Bidomain is certainly the Semi-Implicit scheme [12]. The basic idea is to treat most
of the terms implicitly while treating the non-linear term semi-implicitly. Since the
non-linear term is cubic, the best choice is to treat only one of the Vm terms implicitly,
i.e.:

In+1
ion = k(V n

m − a)(V n
m − 1)V n+1

m + wn+1,

at each time-step n + 1. Moreover, the gating variable ODE is treated implicitly with
the exception of the term Vm:

M
wn+1 − wn

∆t
= εM(V n

m − γwn+1).

Therefore, we can transform the semi-discrete Problem 5 into:

χmCm

[
M −M
−M M

][
φn+1
i −φni

∆t
φn+1
e −φne

∆t

]
+

[
Ai 0

0 Ae

][
φn+1
i

φn+1
e

]
+[

C(V h
m) −C(V h

m)

−C(V h
m) C(V h

m)

][
φn+1
i

φn+1
e

]
+ χm

[
M 0

0 −M

][
wn+1

wn+1

]
=

[
Fn+1
i

Fn+1
e

]
,

M
wn+1 − wn

∆t
= εM(V n

m − γwn+1).

We remind that V n
m = φni − φne . Separating known and unknown terms, we obtain:



(
χmCm

∆t

[
M −M
−M M

]
+

[
Ai 0

0 Ae

]
+

[
C(V n

m) −C(V n
m)

−C(V n
m) C(V n

m)

])[
φn+1
i

φn+1
e

]
=[

Fn+1
i

Fn+1
e

]
− χm

[
M 0

0 −M

][
wn+1

wn+1

]
+
χmCm

∆t

[
M 0

0 −M

][
V n
m

V n
m

]
,

(
1

∆t
+ εγ)Mwn+1 = εMV n

m +
M

∆t
wn.
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If we de�ne:

� B = χmCm

∆t

[
M −M
−M M

]
+

[
Ai 0
0 Ae

]
,

� Cnl(V
n
m) =

[
C(V n

m) −C(V n
m)

−C(V n
m) C(V n

m)

]
,

� rn+1 =

[
Fn+1
i

Fn+1
e

]
− χm

[
M 0
0 −M

] [
wn+1

wn+1

]
+ χmCm

∆t

[
M −M
−M M

] [
φni
φne

]
,

we get the system in its �nal form.

Problem 6 (Semi-implicit discretized system). Find Φn+1 = [φn+1
i φn+1

e ]T and wn+1

∀n = 0, · · · , N − 1 such that:( 1
∆t + εγ)Mwn+1 = εMV n

m + M
∆tw

n,

(B + Cnl(V
n
m))Φn+1 = rn+1.

(7)

The implementation can be found at Section 8.2.3.

4.2 The Godunov operator-splitting

The main feature of a general operator-splitting method is the sub-division of the prob-
lem into two di�erent problems to be solved sequentially. This is possible and justi�ed
when the original functional operator L is splitted into 2 di�erent operators such that
L(u) = L1(u)+L2(u). Two operator-splitting methods have been implemented, the �rst
is of Godunov type and a detailed study together with its properties can be found in
[15]. The formulation is:

Find V̂ n+1
m , φn+1

i , φn+1
e , wn+1 such that:χmCmM

V̂ n+1
m −V n

m
∆t + C(V n

m)V n
m + χmMwn = 0,

wn+1−wn

∆t = ε(V n
m − γwn).χmCmM

V n+1
m −V̂ n+1

m
∆t +Aiφ

n+1
i = Fn+1

i ,

−χmCmM V n+1
m −V̂ n+1

m
∆t +Aeφ

n+1
e = Fn+1

e .

Putting into a unique system:
χmCmM

V n+1
m −V n

m
∆t + C(V n

m)V n
m + χmMwn +Aiφ

n+1
i = Fn+1

i ,

χmCmM
V n+1
m −V n

m
∆t + C(V n

m)V n
m + χmMwn −Aeφn+1

e = −Fn+1
e ,

wn+1 = (1− εγ∆t)wn + ε∆tV n
m.

(8)
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The equations in system (8) can be rewritten as:

(
χmCm

∆t M +Ai

)
φn+1
i − χmCm

∆t Mφn+1
e = Fn+1

i − χmMwn +
(
χmCm

∆t M − C(V n
m)
)
V n
m,

χmCm

∆t Mφn+1
i −

(
χmCm

∆t M +Ae

)
φn+1
e = −Fn+1

e − χmMwn +
(
χmCm

∆t M − C(V n
m)
)
V n
m,

wn+1 = (1− εγ∆t)wn + ε∆tV n
m.

Then, we obtain the �nal form:

Problem 7 (Godunov operator-splitting discretized system). Find Φn+1 = [φn+1
i φn+1

e ]T

and wn+1 ∀n = 0, · · · , N − 1 such that:

(
χmCm

∆t

[
M −M
M −M

]
+

[
Ai 0

0 −Ae

])[
φn+1
i

φn+1
e

]
=

[
Fn+1
i

−Fn+1
e

]
+

−χm

[
M 0

0 M

][
wn

wn

]
+

(
χmCm

∆t

[
M 0

0 M

]
−

[
C(V n

m) 0

0 C(V n
m)

])[
V n
m

V n
m

]
,

wn+1 = (1− εγ∆t)wn + ε∆tV n
m.

The implementation is written at Section 8.2.4.

4.3 The quasi-implicit operator-splitting

The aim of a quasi-implicit operator splitting is to treat implicitly all the terms except
the cubic one. Even if it cannot be de�ned as a fully implicit method, we hope to
achieve more stability if compared to the previous Godunov-kind scheme. This time,
the formulation turns out to be:

Find Ṽ n+1
m , φn+1

i , φn+1
e , wn+1 such that:χmCmM

Ṽ n+1
m −V n

m
∆t + C(V n

m)V n+1
m + χmMwn+1 = 0,

wn+1−wn

∆t = ε(V n+1
m − γwn+1).

χmCmM
V n+1
m −Ṽ n+1

m
∆t +Aiφ

n+1
i = Fn+1

i ,

−χmCmM V n+1
m −Ṽ n+1

m
∆t +Aeφ

n+1
e = Fn+1

e .

Putting into a unique system, we obtain:
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χmCmM

V n+1
m −V n

m
∆t + C(V n

m)V n+1
m + χmMwn+1 +Aiφ

n+1
i = Fn+1

i ,

χmCmM
V n+1
m −V n

m
∆t + C(V n

m)V n+1
m + χmMwn+1 −Aeφn+1

e = −Fn+1
e ,

wn+1−wn

∆t = ε(V n+1
m − γwn+1).

(9)

If we de�ne:

� Qn = χmCm

∆t M + C(V n
m) + εχm∆t

1+εγ∆tM ,

� Rn = χmCm

∆t MV n
m −

χm

1+εγ∆tMwn,

the equations in system (9) can be written as:

χmCmM
φn+1
i − φn+1

e − V n
m

∆t
+ C(V n

m)(φn+1
i − φn+1

e )+

+χmM

(
wn + ε∆t(φn+1

i − φn+1
e )

1 + εγ∆t

)
+Aiφ

n+1
i = Fn+1

i ,

⇒ (Qn +Ai)φ
n+1
i −Qnφn+1

e = Rn + Fn+1
i ,

(10)

χmCmM
φn+1
i − φn+1

e − V n
m

∆t
+ C(V n

m)(φn+1
i − φn+1

e )+

+χmM

(
wn + ε∆t(φn+1

i − φn+1
e )

1 + εγ∆t

)
−Aeφn+1

e = −Fn+1
e ,

⇒ Qnφ
n+1
i − (Qn +Ae)φ

n+1
e = Rn − Fn+1

e ,

(11)

wn+1 =
wn + ε∆t(φn+1

i − φn+1
e )

1 + εγ∆t
. (12)

The �nal system becomes:

Problem 8 (Quasi-implicit operator-splitting discretized system). Find Φn+1 = [φn+1
i φn+1

e ]T

and wn+1 ∀n = 0, · · · , N − 1 such that:

([
Qn −Qn
Qn −Qn

]
+

[
Ai 0

0 −Ae

])[
φn+1
i

φn+1
e

]
=

[
Rn

Rn

]
+

[
Fn+1
i

−Fn+1
e

]
,

wn+1 =
wn + ε∆t(φn+1

i − φn+1
e )

1 + εγ∆t .

The implementation is shown at Section 8.2.5.
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5 About uniqueness of the potentials

5.1 Analytical concepts

Examining for a moment the Bidomain problem analytical formulation (Problem 2), we
can immediately realize that the intracellular and the extracellular potentials appear
only through their di�erence Vm or their gradient. This means that there cannot be
uniqueness for the two functions. Namely:

φi, φe classical solutions of Bidomain⇒ φi + ϕ, φe + ϕ are solutions as well

∀ϕ : [0, T ]→ R su�ciently regular.
(13)

However, this fact should not surprise nor confuse the reader. First of all, we remind
again that in [5] and [7] there are proofs for the Vm and w uniqueness, then this is
taken for granted. Secondly, this statement re�ects the physical intuition of the prob-
lem: cellular dynamics is not involved by potentials exact values but instead from their
di�erence, in addition a potential value is nonsense if a convention value to compare it
with has not been set. The dependence on time can be interpreted as follows: if at any
time instant, we change the conventional potential value, the dynamics of the problem
do not change.

Moreover, we can give this simple result to show that the solutions of the form of equa-
tion (13) are also the only admissible:

Theorem 1. For the Bidomain problem coupled with Fitzhugh-Nagumo model with Neu-

mann boundary conditions (Problem 2) the classical solutions φi, φe are unique up to a

constant depending only on time.

Proof. We remind that existence and uniqueness for Vm and w have already been
proved in [5]. Suppose now there exist two couples (φ1

i , φ
1
e),(φ

2
i , φ

2
e) of potentials solutions

of the Bidomain problem. If Vm is unique, then there must exist a unique value of Vm
such that:

φ1
i − φ1

e = φ2
i − φ2

e = Vm,

Then, we de�ne a function ϕ : Ω × [0, T ]→ R as:

ϕ := φ1
i − φ2

i = φ1
e − φ2

e,

If we consider the Problem 2, the following equations must hold:

χmCm
∂Vm
∂t −∇ · (Σi∇φ1

i ) + χmIion(Vm, w) = Iexti , in Ωmus × (0, T ],

χmCm
∂Vm
∂t −∇ · (Σi∇φ2

i ) + χmIion(Vm, w) = Iexti , in Ωmus × (0, T ],

Σi∇φ1
i · n = bi, on ∂Ωmus × (0, T ],

Σi∇φ2
i · n = bi, on ∂Ωmus × (0, T ].
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Subtracting the �rst two equations and the second two we obtain:−∇ · (Σi∇ϕ) = 0, in Ωmus × (0, T ],

Σi∇ϕ · n = 0, on ∂Ωmus × (0, T ].

That is a classical Laplace problem with homogeneous Neumann boundary conditions.
From [13], we know that the solution set is composed of all constant terms (remember
that Σi is positive de�nite). However, we must pay attention to the fact that ϕ is a
time-dependent function, even if time does not compare in the system.
Thus, we can state:

∃ϕ̃ : [0, T ]→ R such that ϕ(x, t) = ϕ̃(t) ∀x ∈ Ω, ∀t ∈ [0, T ].

To conclude, we can observe now that if these two couples of solutions exist, then:

φ1
i − φ2

i = φ1
e − φ2

e = ϕ̃ ∀x ∈ Ω,∀t ∈ [0, T ].

Remark. For what concerns the regularity of ϕ, we can certainly state that, as a dif-

ference of two su�ciently regular functions, it belongs to the same class of regularity of

the potentials if restricted to the sole time variable.

We can conclude this analytical digression with an accomplished necessary and su�cient
condition for the potentials solutions.

Corollary 1. Suppose the couple (φi, φe) is a classical solution of Problem 2 (for a

certain w). The couple (φ̃i, φ̃e) of su�ciently regular real functions de�ned in Ω× [0, T ]
is another couple solution if and only if both φ̃i, φ̃e di�er respectively from φi, φe for

a time-dependent function ϕ that belongs to the union of the regularity classes of the

previous functions if restricted to time variable.

Proof. The regularity statement is trivial and already discussed. The right implica-
tion is due to the previous theorem. Finally, the left implication follows what has been
shown in equation (13): it is enough to insert φi +ϕ and φe +ϕ in the Bidomain system
to �nd out that ϕ disappears and the remaining system is the same as the one with
φi, φe, thus solved by hypothesis.

5.2 Numerical correction

Previous analytical results are crucial for what concerns the numerical computations
since the Bidomain problem turns out to be not exactly well-posed if we adopt the
standard space H1. Even if, in general, the right Vm is most of the times achieved thanks
to its uniqueness, our aim is to impose a further condition on the φi, φe unknowns for
the following two reasons:
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1. To pursue the achievement of the exact potentials and not their values up to a
constant. Useful for instance for the error analysis.

2. To strengthen our Galerkin formulation that currently derives from a problem that
is well-posed only in H1\R and, for this reason, may show bad features, as the
generation of an ill-conditioned system or even an indeterminate system.

We, �rstly, observe that the additional condition should be applied only to one of the
potentials, for instance to φi. Indeed, the di�erence of the two possible solutions is ϕ for
both intracellular and extracellular potentials, therefore imposing ϕ at each time-step
implies the uniqueness imposition for both φi, φe.

The most common and simple strategies are the following:

1. Imposition of the value of the function in a speci�c point.

φi(x̄, t) = ϕ(t) ∀t ∈ [0, T ],

2. Imposition of the function mean value.∫
Ω
φi(x, t) dx = ϕ(t) ∀t ∈ [0, T ].

Notice that the �rst strategy would be useless if we keep working with an analytical and
abstract weak formulation in Sobolev spaces. However, in the numerical context, we
can assume certain regularities for the solution that let it makes sense and be the most
common choice for numerical implementations.

As we will examine later on, it is demanding to implement the �rst strategy in a Dubiner
context without losing the main system properties. Thus, we slightly change the �rst
strategy and we instead opt for the imposition of a vector solution coe�cient. For what
concerns the Lagrangian hat functions, this has the same meaning as before, provided
that x̄ is not a whatever point but a dof point. On the other hand, for Dubiner basis,
this has a completely di�erent and abstract meaning: we remind that this time it has
the role of modal coe�cient.

Consider {uj}j=1...Nh
as the list of the vector solution. As a consequence, we give the

numerical version of the previous strategies:

1. Imposition of a coe�cient of the vector solution.

unl = ϕ(tn) ∀n ∈ {1, N},

2. Imposition of the function mean value.∑
j=1...Nh

unj wj = ϕ(tn) ∀n ∈ {1, N},
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where l is a �xed value ∈ {1, Nh} and wj stands for a suitable weight (that depends on
the mesh geometry, the basis choice and the quadrature formula chosen).

We remind that our aim is to impose such conditions directly into the system. The
easiest way would certainly be to impose these conditions after the system resolution,
as it has been reproduced in other past works. However, in this case, some issues related
to ill-posedness arise, especially ill-conditioning. Then, in the next sections, we will
illustrate how we managed to impose potential uniqueness only by changing matrices
and vectors coe�cients before the resolution.

5.2.1 Implementation of the �rst coe�cient imposition

For simplicity, we choose l = 1. Then, un1 has the meaning of:

� Value of u in the �rst dof point, ∀ timestep n (in the case of FEM basis)

� Fourier coe�cient of u w.r.t. the �rst Dubiner basis function, ∀ timestep n (in the
case of Dubiner basis)

What follows will be independent of basis choice. Suppose c ∈ R is the value to impose
in the system Au = ~b for a certain timestep n. Since the �rst coe�cient occupies the
�rst cell in the unknown vector and in�uences other coe�cient values only through the
�rst matrix column, we can switch the system from:

A =


a11 a12 . . . a1Nh

a21 a22 . . . a2Nh

a31 a32 . . . a3Nh

. . . . . . . . . . . .
aNh1 aNh2 . . . aNhNh

 b =


b1
b2
b3
. . .
bNh


to:

Ã =


1 0 . . . 0
0 a22 . . . a2Nh

0 a32 . . . a3Nh

. . . . . . . . . . . .
0 aNh2 . . . aNhNh

 b̃ =


c

b2 − a21c
b3 − a31c

. . .
bNh
− aNh1c



This is certainly correct since in the �rst system line u1 = c is automatically imposed
and, in the other lines, u1 is no more treated as unknown but as a known data and then
moved to the r.h.s. of the system.
The very advantage of this procedure is the conservation of A symmetry. As we have
previously anticipated, we discarded the nodal value strategy because, using Dubiner
basis, we would have lost this crucial property.
Moreover, the value c can be freely chosen, for instance from the exact solution (when
error analysis needs to be executed) or a conventional �xed value as zero.
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On the other hand, there are two main disadvantages. First of all, the system's �rst line
information has been deleted during this procedure. However, if the mesh is composed of
many elements, this information is not essential and the solution behavior is practically
the same as this information were provided.
Secondly, if the initial system is hugely ill-conditioned or even non-solvable (determinant
could approximate the machine epsilon when we have homogeneous boundary conditions
and/or no forcing terms), this imposition may have an overshooting e�ect that unbal-
ances the solution. For these problems, a global imposition has to be adopted and this
is the reason why we implemented the more complicated mean value imposition strategy.

The coe�cient imposition procedure has been implemented in the script assign_phi_i.m
(Section 8.2.6) that takes the c value from the exact solution.
To conclude this section, we can also observe that the numerical imposition is done at
every time-step. This is con�rmed from previous analytical theory as the di�erence ϕ is
a constant but depending on time: therefore, it is needed to �x it at every time-step.

5.2.2 An analytical motivation for the mean value imposition method

It is easy to realize that the procedure in Section 5.2.1 cannot be replicated for the mean
unless losing symmetry. For instance, in the case of FEM basis and zero mean, a �rst
line full of ones would imply also a �rst column full of ones and thus the resolution would
be compromised. We should look for a di�erent strategy. Let us start with a simple
reference problem:

Problem 9 (Reference zero-mean problem - strong form). Let Ω be an open, bounded

and su�ciently regular domain, f ∈ C0(Ω̄). Find u ∈ C2(Ω) ∩ C1(Ω̄) such that:
−∆u = f, in Ω,∫

Ω u = 0, in Ω,

∇u · n = 0, on ∂Ω.

For our scopes, it is convenient to move to the variational formulation:

Problem 10 (Reference zero-mean problem - weak form). Let be an Ω open and bounded

set, f ∈ L2(Ω). Find u ∈ H1(Ω) such that:
∫

Ω
∇u · ∇v =

∫
Ω
fv, ∀v ∈ H1(Ω),∫

Ω
u = 0.

As usual, the regularity of f and Ω imply that the weak solution is the classical solution
as well. For this reason, let us focus only on the weak form. In addition, observe that if
Ω is bounded, then H1(Ω) ⊂ L2(Ω) ⊂ L1(Ω), therefore the second equation is justi�ed.
The next step is the study of the well-posedness.

24



Lemma 1. The Problem 10 admits a unique weak solution u if and only if the compat-

ibility condition
∫

Ω f = 0 holds, in other words if f is a zero-mean function. Moreover,

u minimizes the Laplace energy functional J(u) = 1
2

∫
Ω |∇u|

2 −
∫

Ω fu.

Proof. Consider for the moment the �rst equation only. It is the Laplace prob-
lem with homogeneous Neumann boundary conditions. In a more general form, it is
equivalent to a speci�c reaction-di�usion problem:{

−∆u+ αu = f, in Ω,

∇u · n = g, on ∂Ω,

with α = 0, g = 0.

We have already discussed that α = 0 is an eigenvalue of the Laplace operator with
Neumann boundary conditions and its eigenspace is composed of all and only constant
terms. From Theorem 7.1.14 in [9], we can state that, since α belongs to the spectrum
and f ∈ L2(Ω), the existence of the weak solution holds if and only if the compatibility
condition: ∫

Ω
f = −

∫
∂Ω
g =

∫
∂Ω

0 = 0,

holds. Then we solved the point about existence of the weak solution.

For what concerns the uniqueness, we know from the same theorem that u is unique
except for other functions that di�er from u for an eigenfunction associated to α = 0.
Since the eigenfunctions of zero are the functions that are constant a.e., we can state
that the weak solution is unique up to a constant term. Then, if we add the second
equation

∫
Ω u = 0, we achieve the existence and uniqueness of the solution.

Suppose now u is the weak solution and v another function ∈ H1(Ω). Then:

∃w ∈ H1(Ω) : v = w + u

⇒ J(v) = J(u+ w) =
1

2

∫
Ω
|∇u+∇w|2 −

∫
Ω
fu−

∫
Ω
fw =

=

J(u)︷ ︸︸ ︷
1

2

∫
Ω
|∇u|2 −

∫
Ω
fu+

1

2

∫
Ω
|∇w|2 +

=0, by def of weak solution︷ ︸︸ ︷∫
Ω
∇u · ∇w −

∫
Ω
fw =

= J(u) +
1

2

∫
Ω
|∇w|2 ≥ J(u).

Remark. The minimization of the functional J for the Laplace problem is a known fact.

However, in this case, where the sole Laplace-Neumann problem is not well-posed, this

result was not trivial and thus it needed a check. Indeed, it is noteworthy to underline

that minimization property holds but in a slightly di�erent way: u is not the absolute

minimum point, every u+ ξ, ξ ∈ R reaches the same minimum.
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Previous well-posedness and minimization results imply that, if u solves Problem 10,
then it is unique and it is the unique zero mean value function that minimizes the func-
tional J(u). Thus, we can transform Problem 10 in another formulation:

Problem 11 (Reference mean-value problem - 2). Find u ∈ H1(Ω) such thatJ(u) = min
v∈H1(Ω)

J(v),

I(u) = 0.

where f ∈ L2(Ω) and

� J(u) = 1
2

∫
Ω |∇u|

2 −
∫

Ω fu,

� I(u) =
∫

Ω u.

Corollary 2. Problem 10 and Problem 11 are both well-posed and share the same unique

solution u ∈ H1. Thus, they are equivalent problems.

Proof. From Lemma 1, we know that Problem 10 is well-posed and its unique solution
u solves Problem 11 too. Let us show that u is the unique solution of Problem 11 too.
Consider v ∈ H1 another di�erent solution and de�ne w = u− v ∈ H1.
From the end of Lemma 1 proof, since J(u) = J(v) by hypothesis, it follows that:∫

Ω
|∇w|2 = 0

Since ∇w ∈ L2(Ω), it implies that ∇w = 0 almost everywhere. From Microteorema

2.2 in [13] about weak gradients, w is constant almost everywhere. But, since I(w) =
I(u)− I(v) = 0, w is necessarily equal to zero a.e.
Summing up, u always exists and is the unique solution of both the problems.

Then, the two problems are well-posed and completely equivalent. The advantage of
the second form is that it consists in a minimization problem with constraints, a kind
of problem that can be solved with generalized Lagrange Multipliers. It means that:

∃λ ∈ R such that < J ′(u), v > +λ < I ′(u), v >= 0 ∀v ∈ H1(Ω),

where J ′, I ′ are the Frechét derivatives of the two operators J, I and < ·, · > represents
the H1 duality. Computing the derivatives, we indeed obtain:

∃λ ∈ R such that

∫
Ω
∇u · ∇v + λ

∫
Ω
v =

∫
Ω
fv ∀v ∈ H1(Ω).

We can then formulate a third and last version of the reference problem:
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Problem 12 (Reference mean-value problem - 3). Find u ∈ H1(Ω), λ ∈ R such that:
∫

Ω
∇u · ∇v + λ

∫
Ω
v =

∫
Ω
fv, ∀v ∈ H1(Ω),∫

Ω
u = 0.

It may seem a very trivial result, but actually it will be the very essence of our mean-value
imposition strategy. First of all, let us check that existence and uniqueness properties
have been conserved.

Lemma 2. Suppose that the assumptions on data of Problem 10 are satis�ed. Then there

exists a couple solution (u, λ) to Problem 12 and u is the same solution of Problems 10

and 11. Moreover, λ = 0 and u is the unique solution of Problem 12.

Proof. For what concerns existence, we can immediately realize that the solution u
of Problem 10 solves the Problem 12 with λ = 0. Then the existence property holds
because existence of Problem 10 has already been proved.

Suppose now there exist two couples (u1, 0), (u2, λ) solutions of the problem and de�ne
ϕ = u2 − u1. Then:

∫
Ω∇u1 · ∇v =

∫
Ω fv, ∀v ∈ H1(Ω),∫

Ω∇u2 · ∇v + λ
∫

Ω v =
∫

Ω fv, ∀v ∈ H1(Ω),∫
Ω u1 =

∫
Ω u2 = 0.

Subtracting, we obtain:
∫

Ω∇ϕ · ∇v + λ
∫

Ω v = 0, ∀v ∈ H1(Ω),∫
Ω ϕ = 0.

(14)

If we assign v = ϕ ∈ H1(Ω), then:
∫

Ω |∇ϕ|
2 + λ

∫
Ω ϕ = 0, ∀v ∈ H1(Ω),∫

Ω ϕ = 0.

⇒
∫

Ω
|∇ϕ|2 + λ

∫
Ω
ϕ =

∫
Ω
|∇ϕ|2 = 0, ∀v ∈ H1(Ω).

Then, ‖∇ϕ‖L2 = 0 implies ϕ constant a.e., but, since it has zero mean, ϕ = 0 a.e.
To conclude, if u1 = u2 a.e. as just proved, the previous system (14) becomes:

λ

∫
Ω
v = 0 ∀v ∈ H1(Ω),

that trivially implies λ = 0.
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This analytical digression was intended as a clari�cation of how Problem 12 can be
considered as equivalent to the original Problem 10 (indeed, they are both well-posed
and have the same solution). For this reason, the system modi�cations of the next section
will be in some way justi�ed by the previous results even if the Bidomain problem is
hugely more complicated than the simple Laplace problem.

5.2.3 Implementation of the mean value imposition

Following the Problem 12 new formulation, the basic idea is to consider λ as a new
coe�cient of the vector solution, for instance, the last one. The vector u is now of
dimension Nh + 1. Let us de�ne di =

∫
Ω ψi where ψi is the i-th basis function (whether

FEM or Dubiner basis). Moreover, de�ne c as the imposed value for the mean. Then
the discretized problem at a certain time-step turns out to be:

Problem 13 (Discretized mean-value imposition problem). Find {ui}i=1...Nh+1 such

that: 

Nh∑
i=1

ui

∫
Ω
∇ψi · ∇ψj + λ dj =

∫
Ω
fψj , ∀j = 1 . . . Nh,

Nh∑
i=1

ui di = c.

Reminding that λ = uNh+1, the previous problem consists in the system transformation
from:

A =


a11 a12 . . . a1Nh

a21 a22 . . . a2Nh

. . . . . . . . . . . .
aNh1 aNh2 . . . aNhNh

 b =


b1
b2
. . .
bNh


to:

Ã =


a11 a12 . . . a1Nh

d1

a21 a22 . . . a2Nh
d2

. . . . . . . . . . . . . . .
aNh1 aNh2 . . . aNhNh

dNh

d1 d2 . . . dNh
0

 b̃ =


b1
b2
. . .
bNh

c


First of all, observe that symmetry is conserved. Moreover, this time no line has been
deleted, hence all the information is conserved. For this reason, a similar procedure
might be replicated for the �rst coe�cient imposition if the information of the �rst row
and �rst column are essential. On the other hand, this method is clearly more expensive
since it requires the computation of many terms that later �ll the matrix. To conclude,
we remind from Lemma 2 that λ is an auxiliary unknown, so its value turns out to be
always zero.
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The implementation of such transformation is carried out in the assign_null_average.m
script (at Section 8.2.7).
Some comments:

� Nh = length(b)/2 at line 3 because the original system is a block matrix system.
We remind that this transformation concerns only φi, then it applies to the �rst
half of the system only.

� c is chosen to be zero (line 42), its value does not come from an exact solution
because the mean-value strategy has been adopted only for realistic simulation
where no exact solutions are provided (see 5.2.4).

� We avoided computing all di for FEM basis as they all have the same value.

� On the other hand, for Dubiner basis, di values are di�erent. However, it is not
needed to compute these values for all the global polynomials as they repeat for
every element. For this reason, we only iterate over the local degrees of freedom.

5.2.4 Final remarks

As already discussed, the more expensive mean-value imposition was implemented and
adopted only for very ill-conditioned systems. For all other cases, the more e�cient
coe�cient imposition worked perfectly. This is why, in our research, we chose to adopt:

� the coe�cient imposition for error analysis simulations in Section 6.1 (as boundary
conditions and forcing terms were never homogeneous)

� the mean value imposition for realistic simulations in Section 6.2 (as boundary
conditions and forcing terms were essentially homogeneous)
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6 Numerical results

6.1 Space error analysis

6.1.1 Chosen data

Considering some example problems, we provide now an experimental error analysis that
can show the e�cacy and goodness of our numerical schemes. For all the simulations,
we choose the parameters proposed in [4] and used in [2] and [10]. These values are
reported in Table 1.

Table 1: Parameters for space error analysis simulations

Domain (m) Ω = (0, 1)2

dt (s) 0.0001

T (s) 0.001

χm (m−1) 105

Σi (Sm
−1)

[
0.12 0

0 0.12

]
Σe (Sm

−1)

[
0.12 0

0 0.12

]
Cm (Fm−2) 10−2

k 19.5

ε 1.2

γ 0.1

a 13 · 10−3

We choose as exact solutions:

Vm = sin(2πx) sin(2πy)e−5t,

w =
ε

εγ − 5
sin(2πx) sin(2πy)e−5t.

From these assumptions, we compute the r.h.s., the boundary conditions and initial
conditions accordingly. Moreover, we remind from Section 5.2.4 that the coe�cient
imposition is always chosen for the following results. When it is not explicitly declared,
D1 (Dubiner basis with p = 1 as polynomial degree) is chosen as polynomials space and
the semi-implicit method is chosen for the time discretization. To conclude, the element
size is split in half 5 times with re�nement levels from 2 to 6 for all the following plots.
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6.1.2 Comparison between Dubiner and FEM basis

At �rst, an error analysis related to the chosen basis is shown. More precisely, we �x
a polynomial order (p = 1, 2 and 3) and we compare the errors of the Dubiner and
Lagrangian hat basis functions choosing the same polynomial order for both. We expect
to see similar results. On the other hand, we expect to see di�erent error orders for
di�erent polynomials orders.

P1-D1 If p = 1 is chosen as polynomial order, the computed errors plots are shown
in Fig. 5, Fig. 6, Fig. 7 and Fig. 8. Here, Dubiner and FEM errors are identical
except for few di�erences regarding φi and φe. This is not a huge inconsistency as it is
simply due to the �rst uniqueness imposition that, contrarily to the second, has di�erent
e�ects for Dubiner and FEM basis. Indeed, the di�erences are visible only in the L2 and
L∞ errors and, moreover, these di�erences disappear when potentials subtract to get
Vm. For further con�rmation, in Section 8.1 the reader could �nd the same comparison
except for the adoption of the mean imposition. In this case, D1 and P1 are indeed
completely equivalent. Then, our results are exactly as expected and show a �rst order
for Vm errors in H1 and DG norms while a second order for Vm errors in L2 and L∞

norms.

P2-D2 For what concerns the second order polynomials, i.e. p = 2, we observe slightly
di�erent results (see Fig. 9, Fig. 10, Fig. 11 and Fig. 12). Indeed, we see a �atter
segment that some errors trends have for small element sizes. However, this is simply
due to the in�uence of other causes of errors (especially the time-discretization errors)
when the space discretization errors become very small. This is the reason why this
e�ect was not present in the previous case where space errors were still too big and
other causes of error negligible. Moreover, potentials di�erence is ampli�ed.
We then underline that these two e�ects are not due to the Dubiner discretization
implementation itself. The �rst di�erence is due to the coe�cient imposition that can
be improved with a mean value imposition as seen in Section 5.2 and Section 8.1. The
second fact is due to time discretization errors that can be reduced if we simply reduce
the time-step. Moreover, if this happens, it means that space discretization errors are
very small (in general, a positive fact). This is why we neglect these e�ects for the error
order estimations and we can state that the Dubiner method goodness keeps intact.
We observe, before the plateau, a quadratic convergence rate for the Vm error measure
in the energy norm and a cubic convergence rate for the Vm error measure in the L2 and
L∞ norms.

P3-D3 Finally, for polynomials of degree 3, we still �nd the expected convergence rate
except for the two phenomena already discussed in the previous two paragraphs. The
results are shown in Fig. 13, Fig. 14, Fig. 15 and Fig. 16. However, because of the
third order precision, space errors are smaller and then these e�ects are ampli�ed. If we
do not consider them, we still get the expected orders that are third order for Vm errors
in H1 and DG norms and fourth order for L2 and L∞ norms.
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Computed errors for Dubiner and FEM with �rst order polynomials

Figure 5: Comparison of the trans-membrane potential (Vm)

(a) Trans-membrane potential (Vm) with p = 1 Dubiner basis

(b) Trans-membrane potential (Vm) with p = 1 Lagrangian hat functions
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Figure 6: Comparison of the intracellular potential (φi)

(a) Intracellular potential (φi) with p = 1 Dubiner basis

(b) Intracellular potential (φi) with p = 1 Lagrangian hat functions
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Figure 7: Comparison of the extracellular potential (φe)

(a) Extracellular potential (φe) with p = 1 Dubiner basis

(b) Extracellular potential (φe) with p = 1 Lagrangian hat functions
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Figure 8: Comparison of the gating variable (w)

(a) Gating variable (w) with p = 1 Dubiner basis

(b) Gating variable (w) with p = 1 Lagrangian hat functions
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Computed errors for Dubiner and FEM with second order polynomials

Figure 9: Comparison of the trans-membrane potential (Vm)

(a) Trans-membrane potential (Vm) with p = 2 Dubiner basis

(b) Trans-membrane potential (Vm) with p = 2 Lagrangian hat functions

36



Figure 10: Comparison of the intracellular potential (φi)

(a) Intracellular potential (φi) with p = 2 Dubiner basis

(b) Intracellular potential (φi) with p = 2 Lagrangian hat functions
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Figure 11: Comparison of the extracellular potential (φe)

(a) Extracellular potential (φe) with p = 2 Dubiner basis

(b) Extracellular potential (φe) with p = 2 Lagrangian hat functions
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Figure 12: Comparison of the gating variable (w)

(a) Gating variable (w) with p = 2 Dubiner basis

(b) Gating variable (w) with p = 2 Lagrangian hat functions
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Computed errors for Dubiner and FEM with third order polynomials

Figure 13: Comparison of the trans-membrane potential (Vm)

(a) Trans-membrane potential (Vm) with p = 3 Dubiner basis

(b) Trans-membrane potential (Vm) with p = 3 Lagrangian hat functions
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Figure 14: Comparison of the intracellular potential (φi)

(a) Intracellular potential (φi) with p = 3 Dubiner basis

(b) Intracellular potential (φi) with p = 3 Lagrangian hat functions
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Figure 15: Comparison of the extracellular potential (φe)

(a) Extracellular potential (φe) with p = 3 Dubiner basis

(b) Extracellular potential (φe) with p = 3 Lagrangian hat functions
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Figure 16: Comparison of the gating variable (w)

(a) Gating variable (w) with p = 3 Dubiner basis

(b) Gating variable (w) with p = 3 Lagrangian hat functions
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6.1.3 Comparison between di�erent time discretization methods

In Section 4 three methods for the time discretization have been proposed and discussed.
An error analysis comparison has been carried out and gives the graphical results shown
in Fig. 17, Fig. 18, Fig. 19 and Fig. 20. We adopted for every plot the Dubiner
basis with �rst polynomial order. It is clear that the three methods show the same
convergence rate and this is expected since the time discretization method choice should
not in�uence the space error order. Moreover, this error analysis con�rms they are all
consistent and work in the same way.
Unfortunately, we could not have a time discretization error analysis (that would have
been much more interesting) because of the presence of the spatial error that is strongly
bigger than the temporal error.
The main di�erence between the three is the explicit/implicit choice for the di�erent
terms that, in general, gives di�erent results only in terms of stability and not of conver-
gence order. Moreover, it is noteworthy to remember that the non-linear term is treated
in a semi-implicit way for all the methods and that no temporal strategy is completely
implicit. For this reason, it may be that the three methods have very similar behavior
under the stability aspect too.

6.1.4 Comparison between methods for uniqueness of φi and φe

Referring to Section 5, we have presented and explained two di�erent methods to impose
uniqueness of the cellular potentials. The simplest one, adopted for the previous error
analysis, imposes the value of the function at a speci�c point. On the other hand, the
second imposes the mean value at zero. The comparison is displayed in Fig. 21, Fig.
22, Fig. 23 and Fig. 24.
First of all, we notice that the behavior for Vm and w are the same. This fact follows
from the theory since the imposition method a�ects only the values of the two poten-
tials. However, for what concerns φi and φe, we see very similar results (even if not
identical, the second method seems slightly more regular in the L2 norm). These plots,
then, con�rm that the two methods are consistent and equivalent.

On the other hand, it has already been stated that some peculiar problems can be
solved only using the second method. Indeed, the �rst method may have an overshoot-
ing e�ect that unbalances the solution. These problems will be considered in Section 6.2
regarding physical simulations. However, since there is no known analytical solution for
these problems, we cannot make now an error analysis like the previous one.

In conclusion, we successfully imposed the uniqueness of the potentials directly into
the system thanks to these two strategies. For what concerns our two initial objectives
(Section 5.2), we achieved both of them since:

� Error plots demonstrate that the φi and φe converge to the exact potentials as Vm
and w do. Moreover, plots show that all the error orders are clearly achieved.

� Condition numbers turn out to be considerably decreased as we can see in Table 2
where we compare the condition number of the l.h.s matrix of the system in equa-
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tion (7). The computation (through the Matlab command condest) has been
performed at the �rst time-step, applying the Dubiner basis with �rst polynomial
degree and the semi-implicit method for the time discretization.

Table 2: Condition number of B + Cnl (equation (7)) at t = 0.0001

Method
nRef

2 3 4 5

No uniqueness imposition 9.51 · 1016 9.77 · 1016 1.6 · 1017 1.82 · 1018

Imposing the �rst coe�cient 1.83 · 108 2.87 · 108 3.9 · 108 4.91 · 108

Imposing the zero mean 4.07 · 107 4.30 · 107 4.08 · 107 4.02 · 107

It is clear that the condition numbers pass from the very high initial values (≈ 1017, 1018)
to ≈ 108 when the �rst strategy is adopted. Moreover, as expected, it is even better with
the second strategy (≈ 107). In addition, the imposition strategies seem to stabilize the
condition number when the re�nement level increases.
We observe that the almost constant value of the condition number follows from the
theory of parabolic di�erential equations. In [16], for instance, there can be found
some bounds for the condition number independent of the element size. However, our
Bidomain problem is certainly more complicated than a standard parabolic problem
and, moreover, Dirichlet boundary conditions are there taken into consideration instead
of the Neumann ones. Despite this, we can surely state that our condition number
results are supported by theoretical backgrounds.
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Computed errors for di�erent time-discretization schemes

Figure 17: Comparison of the trans-membrane potential (Vm)

(a) Vm: Semi-implicit method with p = 1 Dubiner basis

(b) Vm: Godunov operator-splitting method with p = 1 Dubiner basis
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(c) Vm: Quasi-implicit operator-splitting method with p = 1 Dubiner basis

Figure 18: Comparison of the intracellular potential (φi)

(a) φi: Semi-implicit method with p = 1 Dubiner basis
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(b) φi: Godunov operator-splitting method with p = 1 Dubiner basis

(c) φi: Quasi-implicit operator-splitting method with p = 1 Dubiner basis
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Figure 19: Comparison of the extracellular potential (φe)

(a) φe: Semi-implicit method with p = 1 Dubiner basis

(b) φe: Godunov operator-splitting method with p = 1 Dubiner basis
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(c) φe: Quasi-implicit operator-splitting method with p = 1 Dubiner basis

Figure 20: Comparison of the gating variable (w)

(a) w: Semi-implicit method with p = 1 Dubiner basis
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(b) w: Godunov operator-splitting method with p = 1 Dubiner basis

(c) w: Quasi-implicit operator-splitting method with p = 1 Dubiner basis
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Computed errors for the uniqueness imposition strategies

Figure 21: Comparison of the trans-membrane potential (Vm)

(a) Vm: imposing the �rst coe�cient with p = 1 Dubiner basis

(b) Vm: imposing the zero mean with p = 1 Dubiner basis
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Figure 22: Comparison of the intracellular potential (φi)

(a) φi: imposing the �rst coe�cient with p = 1 Dubiner basis

(b) φi: imposing the zero mean with p = 1 Dubiner basis
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Figure 23: Comparison of the extracellular potential (φe)

(a) φe: imposing the �rst coe�cient with p = 1 Dubiner basis

(b) φe: imposing the zero mean with p = 1 Dubiner basis
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Figure 24: Comparison of the gating variable (w)

(a) w: imposing the �rst coe�cient with p = 1 Dubiner basis

(b) w: imposing the zero mean with p = 1 Dubiner basis
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6.2 Toward a realistic simulation

Our �nal goal is to exploit the strategies and tools presented in the previous sections to
run simulations that can mimic the cardiac electrophysiology phenomena. It is notewor-
thy to warn that no exact solutions are known for these kinds of problems. Moreover,
we point out that there are some limitations to the complete resemblance to the realistic
phenomena, for instance, the domain shape. Our general choices for all the test-cases
are reported in Table 3.

Table 3: Parameters for pseudo-realistic simulations

Domain (m) Ω = (−0.025, 0.035)2

Temporal scheme Semi-implicit

Polynomials space D1

dt (s) 0.0001

nREF 5

Initial condition for Vm (V ) 0

Initial condition for w 0

Iexti (Am−3) I χ[0.001,0.002](t)χ[0.0045,0.0055](x)χ[0.0045,0.0055](y)

Iexte (Am−3) I χ[0.001,0.002](t)χ[0.0045,0.0055](x)χ[0.0045,0.0055](y)

bi (Am
−2) 0

be (Am
−2) 0

χm (m−1) 105

Cm (Fm−2) 10−2

Σi (Sm
−1)

[
0.34 0

0 0.06

]
Σe (Sm

−1)

[
0.62 0

0 0.24

]

In Table 3, I is a positive value to be chosen depending on the test case. We remind from
Section 5.2.4 that the mean value imposition is always chosen for realistic simulations.
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Moreover, we observe that the main di�erences with the previous parameters are the
square domain that is no more unitary and the anisotropy of the di�usion tensors. The
latter choice is motivated by the real utility of the Bidomain Model if compared to the
Monodomain Model, where the two tensors are assumed to be equal or proportional.
Parameter values are taken from literature, see [12].

Physically, this setting represents a square section of the surface of the heart that is
electrically isolated (homogeneous boundary conditions) and an external current that is
applied in a central region for a limited interval of time. It could be seen as a simulation
of the action of a de�brillator.
To conclude, we observe that the compatibility condition (equation (1)) for the existence
of the solution is satis�ed since boundary conditions are null and external currents are
the same in the intracellular and extracellular regions.

For what concerns the FitzHugh-Nagumo parameters, there are no general values as for
the previous ones. To generalize this aspect, we de�ned two di�erent test-cases with two
di�erent sets of parameters, as shown in Table 4.

Table 4: FitzHugh-Nagumo Parameters for pseudo-realistic simulations

Test-case 1 Test-case 2

k 19.5 1

ε 1.2 0.2232

γ 0.1 4.0322

a 13 · 10−3 0.004

The �rst test-case data employs the values already adopted for Section 6.1 and taken
from past projects [4],[2], [10]. Meanwhile, the second test-case parameters are taken
from [1].

6.2.1 First test-case

For both the test-cases, we aim to show two di�erent situations depending on the external
current intensity: �rst, for too weak currents, the electrical activation should miss and
this implies that the potentials are not capable to hold up (under�ow case). Second, if
the intensity is over a certain threshold, we should see the electrical activation and the
resulting di�usion (over�ow case). After several simulations, we have proved that:

� I = 500 · 103Am−3 is a suitable value for the under�ow case.

� I = 700 · 103Am−3 is a suitable value for the over�ow case.

In Fig. 25 and in Fig. 26, we report the computed solutions for both choices of I using
�rst polynomial degree Dubiner functions.
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Figure 25: Test-case 1, computed snapshots for under�ow case (I = 500 · 103Am−3)
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Figure 26: Test-case 1, computed snapshots for over�ow case (I = 700 · 103Am−3)
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6.2.2 Second test-case

For this test case, the threshold for the activation is di�erent. We choose:

� I = 15000 · 103Am−3 as a suitable value for the under�ow case.

� I = 20000 · 103Am−3 as a suitable value for the over�ow case.

The results related to this test-case are reported in Fig. 27 and Fig. 28.

6.2.3 Comments on the results

As expected, we can distinguish two di�erent phenomena in both the test-cases:

� In under�ow simulations, propagation is visible and the wave height (that is always
below 1) decreases at every time-step. Then, the overall phenomenon seems to be
only di�usive.

� On the contrary, in over�ow simulations, propagation is visible and the wave height
keeps constant with value ≈ 1.

On the other hand, the main di�erences due to the choice of the FitzHugh-Nagumo

parameters turn out to be:

� The threshold intensity (in test-case 2 this value is ten times the �rst).

� The speed of propagation (test-case 2 needs a lot more time to activate all the
domain, 0.6 seconds are still not su�cient).

� The direction of propagation (shape in test-case 2 is more symmetric).

Most of these features were expected and successfully re�ect the physical phenomenon.
Indeed, a certain current intensity is needed to fully activate the myocytes. Otherwise,
cells go soon back to their rest potential. Moreover, the stretched shape of the activated
region is consistent with the anisotropy of the di�usion tensors and it physically shows
the di�erence of conductivity between the tangential and normal direction of the �bers.

On the other hand, if we look at the potential cycle shown in Fig. 1, we notice some
unexpected mismatches. First of all, the rest and activation values should be −0.09V
and 0.02V and not 0V and 1V . However, it is probably due to the simplicity of the
FitzHugh-Nagumo model that we adopted. Just from the analytical formulation is clear
that Vm = 0 is an equilibrium value and not Vm = −0.09, a re�nement to the model is
needed to get these more realistic values.
The second incongruence is the missed repolarization after the activation. In other words,
the potential keeps the same value and it does not decrease back to 0 even after several
time-steps. We think it is in part due to (again) the simplicity of the FitzHugh-Nagumo

model, fact that is already observed in [6]. Here, it is indeed stated that FitzHugh-

Nagumo model is not able to truly approximate the physical phenomenon, in particular
for the plateau and repolarization phases.
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Figure 27: Test-case 2, computed snapshots for under�ow case (I = 15000 · 103Am−3 )
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Figure 28: Test-case 2, computed snapshots for over�ow case (I = 20000 · 103Am−3)
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7 Conclusion

In this project we have considered a DG approach for cardiac electrophysiology. After
some motivations, we have validated the proposed numerical method through a basic
error analysis and a couple of simulations aimed to re-create what happens in the human
heart. From the former we obtained excellent validations: every result was indeed con-
sistent with the theory, from the Dubiner implementation to the uniqueness impositions.
We also achieved very good outcomes from the pseudo-realistic simulations: they turned
out to be consistent with the physical phenomenon, except for the missed repolarization.
We doubt that it is due to the numerical schemes, because of the excellent results in the
error analysis. We instead suppose it is due to the extreme simplicity of the ionic model
taken into consideration. Some inconsistencies may also be caused by a too coarse mesh,
something that we could not avoid to get results in a reasonable time. Further researches
could then consider a mesh-adaptivity study (even if it requires very powerful comput-
ers) and/or the adoption of other ionic models. We hope that this last point could be a
springboard for future projects aiming at improving and generalize our results.
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8 Appendix

8.1 Comparison between Dubiner and FEM basis with mean value

imposition

8.1.1 P1-D1

Figure 29: Comparison of the trans-membrane potential (Vm)

(a) Trans-membrane potential (Vm) with p = 1 Dubiner basis

(b) Trans-membrane potential (Vm) with p = 1 Lagrangian hat functions
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In Fig. 29, Fig. 30, Fig. 31 and Fig. 32 the same D1−P1 comparison of Section 6.1.2 is
displayed except for the uniqueness strategy choice. In this case, indeed, the null mean
value is instead imposed. Other polynomials orders have been discarded because of the
higher computing time. The only aim of this section is to show that the �rst coe�cient
imposition may have di�erent e�ects on the two bases, while the mean value imposition
behaves in the same way.

Figure 30: Comparison of the intracellular potential (φi)

(a) Intracellular potential (φi) with p = 1 Dubiner basis

(b) Intracellular potential (φi) with p = 1 Lagrangian hat functions
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Figure 31: Comparison of the extracellular potential (φe)

(a) Extracellular potential (φe) with p = 1 Dubiner basis

(b) Extracellular potential (φe) with p = 1 Lagrangian hat functions
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Figure 32: Comparison of the gating variable (w)

(a) Gating variable (w) with p = 1 Dubiner basis

(b) Gating variable (w) with p = 1 Lagrangian hat functions

This fact follows from the theory since the �rst coe�cient imposition has two di�erent
meanings depending on the basis: in one case it �xes the value of the solution in one
speci�c point, in the other it �xes one Fourier coe�cient. On the other hand, the mean
value imposition works in the same way. Indeed, the coe�cients for system transforma-
tion are calculated in such a way to compute the same value for the mean independently
from the basis choice.
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8.2 Numerical codes

8.2.1 dubiner_to_fem.m

1 function [ u0 ] = dubiner_to_fem (uh , femregion , Data )
2

3 . . .
4 . . .
5 . . .
6

7 u0 = zeros ( femregion . ndof , 1 ) ;
8

9 % loop over a l l the e lements
10 for i e = 1 : femreg ion . ne
11

12 % to ge t the g l o b a l indexes f o r the nodes o f i e
13 nln = femregion . nln ;
14 index = ( ie =1)*nln * ones ( nln , 1 ) + [ 1 : nln ] ' ;
15

16 for i = 1 : nln
17 for j = 1 : nln
18 u0 ( index ( i ) ) = u0 ( index ( i ) ) + uh( index ( j ) )* phi (1 , i , j ) ;
19 end

20 end

21 end

8.2.2 fem_to_dubiner.m

1 function [ u0 ] = fem_to_dubiner (uh , femregion , Data )
2

3 . . .
4 . . .
5 . . .
6

7 u0 = zeros ( femregion . ndof , 1 ) ;
8

9 % loop over a l l the e lements
10 for i e = 1 : femreg ion . ne
11

12 % to ge t the g l o b a l indexes f o r the nodes o f i e
13 nln = femregion . nln ;
14 index = ( ie =1)*nln * ones ( nln , 1 ) + [ 1 : nln ] ' ;
15 % loop over l o c a l degrees o f freedom
16 for i = 1 : nln
17 % loop over 2D quadrature po in t s
18 for k = 1 : length (w_2D)
19 uh_eval_k = 0 ;
20 % loop to e va l ua t e uh in a quadrature po in t
21 for j = 1 : nln
22 uh_eval_k = uh_eval_k + uh( index ( j ) )* phi_fem (1 , k , j ) ;
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23 end

24 u0 ( index ( i ))=u0 ( index ( i ))+uh_eval_k*phi_dub (1 , k , i ) . *w_2D(k ) ;
25 end

26 end

27 end

8.2.3 main2D.m (semi-implicit method)

1 MASS = [M =M; =M M] ;
2 ZERO = sparse ( length (M) , length (M) ) ;
3 MASS_W = [M ZERO; ZERO =M] ;
4 STIFFNESS = [ Ai ZERO; ZERO Ae ] ;
5

6 for t=dt : dt :T
7

8 w1 = 1/(1+ ep s i l o n *gamma*dt )* (w0+ep s i l o n *dt*Vm0) ;
9 w1=cat (1 ,w1 , w1 ) ;

10 Vm0 = cat (1 ,Vm0,Vm0) ;
11

12 f i = assemble_rhs_i ( femregion , neighbour , Data , t ) ;
13 f e = assemble_rhs_e ( femregion , neighbour , Data , t ) ;
14 f 1 = cat (1 , f i , f e ) ;
15

16 [C] = assemble_nonl inear ( femregion , Data ,Vm0) ;
17 NONLIN = [C =C; =C C ] ;
18

19 r = f1 + ChiM*Cm/dt * MASS_W * Vm0 = ChiM * MASS_W *w1 ;
20

21 B=ChiM*Cm/dt * MASS + (STIFFNESS + NONLIN) ;
22

23 u1 = B \ r ;
24

25 f 0 = f1 ;
26 Vm0 = u1 ( 1 : l l )=u1 ( l l +1:end ) ;
27 u0 = u1 ;
28 w0 = w1 ( 1 : l l ) ;
29 end

8.2.4 main2D.m (Godunov operator-splitting method)

1 ZERO = sparse ( l l , l l ) ;
2 MASS = (ChiM*Cm/dt ) * [M, =M; M =M] ;
3 MASSW = ChiM* [M, ZERO; ZERO, M] ;
4

5 for t=dt : dt :T
6

7 f i = assemble_rhs_i ( femregion , neighbour , Data , t ) ;
8 f e = assemble_rhs_e ( femregion , neighbour , Data , t ) ;
9 f 1 = cat (1 , f i , =f e ) ;
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10

11 [C] = assemble_nonl inear ( femregion , Data ,Vm0) ;
12

13 w1 = (1 =ep s i l o n *gamma*dt )*w0 + ep s i l o n *dt*Vm0;
14 B = MASS + [ Ai , ZERO; ZERO, =Ae ] ;
15 r = =MASSW* [w0 ;w0 ] + ( (Cm/dt )*MASSW = [C, ZERO; ZERO, C] )
16 * [Vm0;Vm0] + f1 ;
17

18 Vm0 = u1 ( 1 : l l ) = u1 ( l l +1:end ) ;
19 u0 = u1 ;
20 w0 = w1 ;
21 end

8.2.5 main2D.m (quasi-implicit operator-splitting method)

1 ZERO = sparse ( l l , l l ) ;
2

3 for t=dt : dt :T
4

5 [C] = assemble_nonl inear ( femregion , Data ,Vm0) ;
6 Q = (ChiM*Cm/dt )*M + C + ( ep s i l o n *ChiM*dt )/(1+ ep s i l o n *gamma*dt )*M;
7 R = (ChiM*Cm/dt )*M*Vm0 = (ChiM)/(1+ ep s i l o n *gamma*dt )*M*w0 ;
8

9 f i = assemble_rhs_i ( femregion , neighbour , Data , t ) ;
10 f e = assemble_rhs_e ( femregion , neighbour , Data , t ) ;
11 f 1 = cat (1 , f i , =f e ) ;
12

13 B = [Q, =Q; Q, =Q] + [ Ai , ZERO; ZERO, =Ae ] ;
14 r = [R;R] + f1 ;
15

16 u1 = B \ r ;
17

18 Vm1 = u1 ( 1 : l l )=u1 ( l l +1:end ) ;
19

20 w1 = (w0 + ep s i l o n *dt*Vm1)/(1+ ep s i l o n *gamma*dt ) ;
21

22 f 0 = f1 ;
23 Vm0 = u1 ( 1 : l l ) = u1 ( l l +1:end ) ;
24 u0 = u1 ;
25 w0 = w1 ;
26 end

8.2.6 assign_phi_i.m

1 function [A, b ] = assign_phi_i (A, b , t , Data , femreg ion )
2

3 . . .
4 . . .
5 . . .
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6

7 i f (Data . fem(1)== 'P ' )
8

9 x = femregion . dof ( 1 , 1 ) ; % x=coord ina te o f the f i r s t dof po in t
10 y = femregion . dof ( 1 , 2 ) ; % y=coord ina te o f the f i r s t dof po in t
11 exact_coe f f = eval (Data . exact_sol_i ) ; % eva l ua t i on o f exac t s o l
12

13

14 e l s e i f (Data . fem(1)== 'D' )
15 x0=femregion . dof ( 3 , 1 ) ; % bottom= l e f t corner o f the f i r s t e lement
16 y0=femregion . dof ( 3 , 2 ) ;
17 h=femregion . dof (1 ,1)= f emreg ion . dof ( 3 , 1 ) ; % leng t h o f the e lement
18

19 exact_coe f f = 0 ;
20 index = 1 ;
21

22 . . .
23 . . .
24 . . .
25

26 % the f i r s t c o e f f i s the L2 s c a l a r product o f uh wi th the f i r s t
27 % ba s i s f unc t i on . To the ge t the r i g h t coe f f , we compute the s c a l a r
28 % product between the exac t s o l u t i o n and the f i r s t b a s i s f unc t i on
29

30 for k = 1 : length (w_2D) % loop over 2D quadrature po in t s
31 %phy s i c a l coords o f the i n t e g r a t i o n po in t
32 x = x0 + h*node_2D(k , 1 ) ;
33 y = y0 + h*node_2D(k , 2 ) ;
34 e v a l s o l = eval (Data . exact_sol_i ) ;
35 exact_coe f f = exact_coe f f + e v a l s o l *phi_dub (1 , k , index ) . *w_2D(k ) ;
36 end

37

38 end

39

40

41 % we change the system c o e f f i c i e n t s to impose u(1)= exac t_coe f f
42 Nh = length (b ) ;
43 b = b = A( : , 1 ) * exact_coe f f ;
44 b (1) = exact_coe f f ;
45 A( : , 1 ) = zeros (Nh , 1 ) ;
46 A( 1 , : ) = zeros (1 ,Nh ) ;
47 A(1 ,1 ) = 1 ;

8.2.7 assign_null_average.m

1 function [A, b ] = ass ign_nul l_average (A, b , Data , femreg ion )
2

3 Nh = length (b ) / 2 ;
4

5 i f (Data . fem(1)== 'P ' )
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6

7 . . .
8 . . .
9 . . .

10

11 for k = 1 : length (w_2D)
12 c o e f f = c o e f f + phi_fem (1 , k , 1 ) . *w_2D(k ) ;
13 end

14

15 for i = 1 :Nh
16 A( i , 2*Nh+1)=c o e f f ;
17 A(2*Nh+1, i )= c o e f f ;
18 end

19

20

21 e l s e i f (Data . fem(1)== 'D' )
22

23 . . .
24 . . .
25 . . .
26

27 for p = 1 : femreg ion . nln
28 p_int = 0 ;
29 for k = 1 : length (w_2D)
30 p_int = p_int + phi_dub (1 , k , p ) . *w_2D(k ) ;
31 end

32 c o e f f (p)=p_int ;
33 end

34

35 for i = 1 : femreg ion . nln :Nh
36 A(2*Nh+1, i : i+femregion . nln=1)=coe f f ' ;
37 A( i : i+femregion . nln=1 ,2*Nh+1)=c o e f f ;
38 end

39

40 end

41

42 b = [ b ; 0 ] ;

72



73



References

[1] V. Anaya et al. �A Virtual Element Method for a Nonlocal FitzHugh-Nagumo
Model of Cardiac Electrophysiology�. In: IMA Journal of Numerical Analysis 40
(2020), pp. 1544�1576.

[2] F. Andreotti and D. Uboldi. Discontinuous Galerkin approximation of the mon-

odomain problem. Politecnico di Milano, 2021.

[3] P. F. Antonietti and P. Houston. �A Class of Domain decomposition Precondi-
tioners for hp-Discontinuous Galerkin Finite Element Methods�. In: Journal of
Scienti�c Computing 46 (2011), pp. 124�149.

[4] M. Bagnara. The Inverse Potential Problem of Electrocardiography Regularized with

Optimal Control. Politecnico di Milano, 2020.

[5] Y. Bourgault, Y. Coudière, and C. Pierre. �Existence and uniqueness of the so-
lution for the bidomain model used in cardiac electrophysiology�. In: Nonlinear
Analysis: Real World Applications 10 (2009), pp. 458�482.

[6] P. Colli Franzone and L. F. Pavarino. �A parallel solver for reaction-di�usion sys-
tems in computational electrocardiology�. In: Mathematical Models and Methods

in Applied Sciences 14 (2004), pp. 883�911.

[7] P. Colli Franzone, L. F. Pavarino, and S. Scacchi. Mathematical Cardiac Electro-

physiology. Cham: Springer-Verlag, 2014.

[8] M. Dubiner. �Spectral Methods on Triangles and Other Domains�. In: Journal of
Scienti�c Computing 6 (1991), pp. 345�390.

[9] A. Ferrero, F. Gazzola, and M. Zanotti. Elementi di analisi superiore per la �sica

e l'ingegneria. Bologna: Società editrice Esculapio, 2015.

[10] L. Marta and M. Perego. Discontinuous Galerkin approximation of the bidomain

system for cardiac electrophysiology. Politecnico di Milano, 2021.

[11] A. Quarteroni. Modellistica Numerica per Problemi Di�erenziali. Milan: Springer-
Verlag, 2016.

[12] A. Quarteroni, A. Manzoni, and C. Vergara. �The cardiovascular system: Math-
ematical modelling, numerical algorithms and clinical applications�. In: Acta Nu-

merica (2017), pp. 365�590.

[13] S. Salsa. Equazioni a derivate parziali. Milan: Springer-Verlag, 2016.

[14] S. J. Sherwin and G. E. Karniadakis. �A new triangular and tetrahedral basis for
high-order �nite element methods�. In: Internation journal for numerical methods

in engineering 38 (1995), pp. 3775�3802.

[15] R. Spiteri and S. Torabi Ziaratgahi. �Operator splitting for the bidomain model
revisited�. In: Journal of Computational and applied Mathematics 296 (2016),
pp. 550�563.

[16] L. Zhu and Q. Du. �Mesh dependent stability and condition number estimates for
�nite element approximations of parabolic problems�. In: Mathematics of Compu-

tation 83 (2014), pp. 37�64.

74


